Nonlinear Ordinary Differential Equations

Nonlinear Ordinary Differential Equations

Author: Martin Hermann

Publisher: Springer

Published: 2016-05-09

Total Pages: 320

ISBN-13: 813222812X

DOWNLOAD EBOOK

The book discusses the solutions to nonlinear ordinary differential equations (ODEs) using analytical and numerical approximation methods. Recently, analytical approximation methods have been largely used in solving linear and nonlinear lower-order ODEs. It also discusses using these methods to solve some strong nonlinear ODEs. There are two chapters devoted to solving nonlinear ODEs using numerical methods, as in practice high-dimensional systems of nonlinear ODEs that cannot be solved by analytical approximate methods are common. Moreover, it studies analytical and numerical techniques for the treatment of parameter-depending ODEs. The book explains various methods for solving nonlinear-oscillator and structural-system problems, including the energy balance method, harmonic balance method, amplitude frequency formulation, variational iteration method, homotopy perturbation method, iteration perturbation method, homotopy analysis method, simple and multiple shooting method, and the nonlinear stabilized march method. This book comprehensively investigates various new analytical and numerical approximation techniques that are used in solving nonlinear-oscillator and structural-system problems. Students often rely on the finite element method to such an extent that on graduation they have little or no knowledge of alternative methods of solving problems. To rectify this, the book introduces several new approximation techniques.


Numerical Methods for Nonlinear Partial Differential Equations

Numerical Methods for Nonlinear Partial Differential Equations

Author: Sören Bartels

Publisher: Springer

Published: 2015-01-19

Total Pages: 394

ISBN-13: 3319137972

DOWNLOAD EBOOK

The description of many interesting phenomena in science and engineering leads to infinite-dimensional minimization or evolution problems that define nonlinear partial differential equations. While the development and analysis of numerical methods for linear partial differential equations is nearly complete, only few results are available in the case of nonlinear equations. This monograph devises numerical methods for nonlinear model problems arising in the mathematical description of phase transitions, large bending problems, image processing, and inelastic material behavior. For each of these problems the underlying mathematical model is discussed, the essential analytical properties are explained, and the proposed numerical method is rigorously analyzed. The practicality of the algorithms is illustrated by means of short implementations.


Numerical Solutions of Boundary Value Problems of Non-Linear Differential Equations

Numerical Solutions of Boundary Value Problems of Non-Linear Differential Equations

Author: Sujaul Chowdhury

Publisher: Chapman & Hall/CRC

Published: 2021-10-25

Total Pages: 102

ISBN-13: 9781003204916

DOWNLOAD EBOOK

The book presents in comprehensive detail numerical solutions to boundary value problems of a number of non-linear differential equations. Replacing derivatives by finite difference approximations in these differential equations leads to a system of non-linear algebraic equations which we have solved using Newton's iterative method. In each case, we have also obtained Euler solutions and ascertained that the iterations converge to Euler solutions. We find that, except for the boundary values, initial values of the 1st iteration need not be anything close to the final convergent values of the numerical solution. Programs in Mathematica 6.0 were written to obtain the numerical solutions.


Nonlinear Ordinary Differential Equations

Nonlinear Ordinary Differential Equations

Author: R. Grimshaw

Publisher: Routledge

Published: 2017-10-19

Total Pages: 342

ISBN-13: 135142808X

DOWNLOAD EBOOK

Ordinary differential equations have long been an important area of study because of their wide application in physics, engineering, biology, chemistry, ecology, and economics. Based on a series of lectures given at the Universities of Melbourne and New South Wales in Australia, Nonlinear Ordinary Differential Equations takes the reader from basic elementary notions to the point where the exciting and fascinating developments in the theory of nonlinear differential equations can be understood and appreciated. Each chapter is self-contained, and includes a selection of problems together with some detailed workings within the main text. Nonlinear Ordinary Differential Equations helps develop an understanding of the subtle and sometimes unexpected properties of nonlinear systems and simultaneously introduces practical analytical techniques to analyze nonlinear phenomena. This excellent book gives a structured, systematic, and rigorous development of the basic theory from elementary concepts to a point where readers can utilize ideas in nonlinear differential equations.


Nonlinear Differential Equations of Chemically Reacting Systems

Nonlinear Differential Equations of Chemically Reacting Systems

Author: George R. Gavalas

Publisher: Springer Science & Business Media

Published: 2013-03-13

Total Pages: 116

ISBN-13: 3642876439

DOWNLOAD EBOOK

In recent years considerable interest has developed in the mathe matical analysis of chemically reacting systems both in the absence and in the presence of diffusion. Earlier work has been limited to simple problems amenable to closed form solutions, but now the computer permits the numerical solution of complex systems of nonlinear differ ential equations. The numerical approach provides quantitative infor mation, but for practical reasons it must be limited to a rather narrow range of the parameters of the problem. Consequently, it is desirable to obtain broader qualitative information about the solutions by in vestigating from a more fundamental mathematical point of view the structure of the differential equations. This theoretical approach can actually complement and guide the computational approach by narrow ing down trial and error procedures, pinpointing singularities and suggesting methods for handling them. The study of the structure of the differential equations may also clarify some physical principles and suggest new experiments. A serious limitation ofthe theoretical approach is that many of the results obtained, such as the sufficient conditions for the stability of the steady state, turn out to be very conservative. Thus the theoretical and computational approaches are best used to gether for the purpose of understanding, designing, and controlling chemically reacting systems. The present monograph is intended as a contribution to the theory of the differential equations describing chemically reacting systems.


Numerical Solution of Boundary Value Problems for Ordinary Differential Equations

Numerical Solution of Boundary Value Problems for Ordinary Differential Equations

Author: Uri M. Ascher

Publisher: SIAM

Published: 1994-12-01

Total Pages: 620

ISBN-13: 9781611971231

DOWNLOAD EBOOK

This book is the most comprehensive, up-to-date account of the popular numerical methods for solving boundary value problems in ordinary differential equations. It aims at a thorough understanding of the field by giving an in-depth analysis of the numerical methods by using decoupling principles. Numerous exercises and real-world examples are used throughout to demonstrate the methods and the theory. Although first published in 1988, this republication remains the most comprehensive theoretical coverage of the subject matter, not available elsewhere in one volume. Many problems, arising in a wide variety of application areas, give rise to mathematical models which form boundary value problems for ordinary differential equations. These problems rarely have a closed form solution, and computer simulation is typically used to obtain their approximate solution. This book discusses methods to carry out such computer simulations in a robust, efficient, and reliable manner.


Nonlinear Partial Differential Equations

Nonlinear Partial Differential Equations

Author: Mi-Ho Giga

Publisher: Springer Science & Business Media

Published: 2010-05-30

Total Pages: 307

ISBN-13: 0817646515

DOWNLOAD EBOOK

This work will serve as an excellent first course in modern analysis. The main focus is on showing how self-similar solutions are useful in studying the behavior of solutions of nonlinear partial differential equations, especially those of parabolic type. This textbook will be an excellent resource for self-study or classroom use.


Introduction to Numerical Methods in Differential Equations

Introduction to Numerical Methods in Differential Equations

Author: Mark H. Holmes

Publisher: Springer Science & Business Media

Published: 2007-04-05

Total Pages: 248

ISBN-13: 0387681213

DOWNLOAD EBOOK

This book shows how to derive, test and analyze numerical methods for solving differential equations, including both ordinary and partial differential equations. The objective is that students learn to solve differential equations numerically and understand the mathematical and computational issues that arise when this is done. Includes an extensive collection of exercises, which develop both the analytical and computational aspects of the material. In addition to more than 100 illustrations, the book includes a large collection of supplemental material: exercise sets, MATLAB computer codes for both student and instructor, lecture slides and movies.


Solving Nonlinear Partial Differential Equations with Maple and Mathematica

Solving Nonlinear Partial Differential Equations with Maple and Mathematica

Author: Inna Shingareva

Publisher: Springer Science & Business Media

Published: 2011-07-24

Total Pages: 372

ISBN-13: 370910517X

DOWNLOAD EBOOK

The emphasis of the book is given in how to construct different types of solutions (exact, approximate analytical, numerical, graphical) of numerous nonlinear PDEs correctly, easily, and quickly. The reader can learn a wide variety of techniques and solve numerous nonlinear PDEs included and many other differential equations, simplifying and transforming the equations and solutions, arbitrary functions and parameters, presented in the book). Numerous comparisons and relationships between various types of solutions, different methods and approaches are provided, the results obtained in Maple and Mathematica, facilitates a deeper understanding of the subject. Among a big number of CAS, we choose the two systems, Maple and Mathematica, that are used worldwide by students, research mathematicians, scientists, and engineers. As in the our previous books, we propose the idea to use in parallel both systems, Maple and Mathematica, since in many research problems frequently it is required to compare independent results obtained by using different computer algebra systems, Maple and/or Mathematica, at all stages of the solution process. One of the main points (related to CAS) is based on the implementation of a whole solution method (e.g. starting from an analytical derivation of exact governing equations, constructing discretizations and analytical formulas of a numerical method, performing numerical procedure, obtaining various visualizations, and comparing the numerical solution obtained with other types of solutions considered in the book, e.g. with asymptotic solution).