Numerical Methods for Two-Point Boundary-Value Problems

Numerical Methods for Two-Point Boundary-Value Problems

Author: Herbert B. Keller

Publisher: Courier Dover Publications

Published: 2018-11-14

Total Pages: 417

ISBN-13: 0486828344

DOWNLOAD EBOOK

Elementary yet rigorous, this concise treatment is directed toward students with a knowledge of advanced calculus, basic numerical analysis, and some background in ordinary differential equations and linear algebra. 1968 edition.


Numerical Solution of Boundary Value Problems for Ordinary Differential Equations

Numerical Solution of Boundary Value Problems for Ordinary Differential Equations

Author: Uri M. Ascher

Publisher: SIAM

Published: 1994-12-01

Total Pages: 620

ISBN-13: 9781611971231

DOWNLOAD EBOOK

This book is the most comprehensive, up-to-date account of the popular numerical methods for solving boundary value problems in ordinary differential equations. It aims at a thorough understanding of the field by giving an in-depth analysis of the numerical methods by using decoupling principles. Numerous exercises and real-world examples are used throughout to demonstrate the methods and the theory. Although first published in 1988, this republication remains the most comprehensive theoretical coverage of the subject matter, not available elsewhere in one volume. Many problems, arising in a wide variety of application areas, give rise to mathematical models which form boundary value problems for ordinary differential equations. These problems rarely have a closed form solution, and computer simulation is typically used to obtain their approximate solution. This book discusses methods to carry out such computer simulations in a robust, efficient, and reliable manner.


Numerical Solution of Nonlinear Boundary Value Problems with Applications

Numerical Solution of Nonlinear Boundary Value Problems with Applications

Author: Milan Kubicek

Publisher: Courier Corporation

Published: 2008-01-01

Total Pages: 338

ISBN-13: 0486463001

DOWNLOAD EBOOK

A survey of the development, analysis, and application of numerical techniques in solving nonlinear boundary value problems, this text presents numerical analysis as a working tool for physicists and engineers. Starting with a survey of accomplishments in the field, it explores initial and boundary value problems for ordinary differential equations, linear boundary value problems, and the numerical realization of parametric studies in nonlinear boundary value problems. The authors--Milan Kubicek, Professor at the Prague Institute of Chemical Technology, and Vladimir Hlavacek, Professor at the University of Buffalo--emphasize the description and straightforward application of numerical techniques rather than underlying theory. This approach reflects their extensive experience with the application of diverse numerical algorithms.


Numerical Solutions of Boundary Value Problems for Ordinary Differential Equations

Numerical Solutions of Boundary Value Problems for Ordinary Differential Equations

Author: A.K. Aziz

Publisher: Academic Press

Published: 2014-05-10

Total Pages: 380

ISBN-13: 1483267997

DOWNLOAD EBOOK

Numerical Solutions of Boundary Value Problems for Ordinary Differential Equations covers the proceedings of the 1974 Symposium by the same title, held at the University of Maryland, Baltimore Country Campus. This symposium aims to bring together a number of numerical analysis involved in research in both theoretical and practical aspects of this field. This text is organized into three parts encompassing 15 chapters. Part I reviews the initial and boundary value problems. Part II explores a large number of important results of both theoretical and practical nature of the field, including discussions of the smooth and local interpolant with small K-th derivative, the occurrence and solution of boundary value reaction systems, the posteriori error estimates, and boundary problem solvers for first order systems based on deferred corrections. Part III highlights the practical applications of the boundary value problems, specifically a high-order finite-difference method for the solution of two-point boundary-value problems on a uniform mesh. This book will prove useful to mathematicians, engineers, and physicists.


Two-Point Boundary Value Problems: Lower and Upper Solutions

Two-Point Boundary Value Problems: Lower and Upper Solutions

Author: C. De Coster

Publisher: Elsevier

Published: 2006-03-21

Total Pages: 502

ISBN-13: 0080462472

DOWNLOAD EBOOK

This book introduces the method of lower and upper solutions for ordinary differential equations. This method is known to be both easy and powerful to solve second order boundary value problems. Besides an extensive introduction to the method, the first half of the book describes some recent and more involved results on this subject. These concern the combined use of the method with degree theory, with variational methods and positive operators. The second half of the book concerns applications. This part exemplifies the method and provides the reader with a fairly large introduction to the problematic of boundary value problems. Although the book concerns mainly ordinary differential equations, some attention is given to other settings such as partial differential equations or functional differential equations. A detailed history of the problem is described in the introduction. · Presents the fundamental features of the method· Construction of lower and upper solutions in problems· Working applications and illustrated theorems by examples· Description of the history of the method and Bibliographical notes


On the Numerical Solution of Two-point Boundary Value Problems

On the Numerical Solution of Two-point Boundary Value Problems

Author: Yale University. Department of Computer Science

Publisher:

Published: 1989

Total Pages: 30

ISBN-13:

DOWNLOAD EBOOK

Abstract: "In this paper, we present a new numerical method for the solution of linear two-point boundary value problems of ordinary differential equations. After reducing the differential equation to a second kind integral equation, we discretize the latter via a high order Nyström scheme. A somewhat involved analytical apparatus is then constructed which allows for the solution of the discrete system using O(N [multiplied by] p[superscript 2]) operations, where N is the number of nodes on the interval and p is the desired order of convergence. Thus, the advantages of the integral equation formulation (small condition number, insensitivity to boundary layers, insensitivity to end-point singularities, etc.) are retained, while achieving a computational efficiency previously available only to finite difference or finite element methods."