Computational Methods in Nonlinear Structural and Solid Mechanics

Computational Methods in Nonlinear Structural and Solid Mechanics

Author: Ahmed K. Noor

Publisher: Elsevier

Published: 2014-05-20

Total Pages: 472

ISBN-13: 1483145646

DOWNLOAD EBOOK

Computational Methods in Nonlinear Structural and Solid Mechanics covers the proceedings of the Symposium on Computational Methods in Nonlinear Structural and Solid Mechanics. The book covers the development of efficient discretization approaches; advanced numerical methods; improved programming techniques; and applications of these developments to nonlinear analysis of structures and solids. The chapters of the text are organized into 10 parts according to the issue they tackle. The first part deals with nonlinear mathematical theories and formulation aspects, while the second part covers computational strategies for nonlinear programs. Part 3 deals with time integration and numerical solution of nonlinear algebraic equations, while Part 4 discusses material characterization and nonlinear fracture mechanics, and Part 5 tackles nonlinear interaction problems. The sixth part discusses seismic response and nonlinear analysis of concrete structure, and the seventh part tackles nonlinear problems for nuclear reactors. Part 8 covers crash dynamics and impact problems, while Part 9 deals with nonlinear problems of fibrous composites and advanced nonlinear applications. The last part discusses computerized symbolic manipulation and nonlinear analysis software systems. The book will be of great interest to numerical analysts, computer scientists, structural engineers, and other professionals concerned with nonlinear structural and solid mechanics.


Numerical Methods for Nonlinear Engineering Models

Numerical Methods for Nonlinear Engineering Models

Author: John R. Hauser

Publisher: Springer Science & Business Media

Published: 2009-03-24

Total Pages: 1013

ISBN-13: 1402099207

DOWNLOAD EBOOK

There are many books on the use of numerical methods for solving engineering problems and for modeling of engineering artifacts. In addition there are many styles of such presentations ranging from books with a major emphasis on theory to books with an emphasis on applications. The purpose of this book is hopefully to present a somewhat different approach to the use of numerical methods for - gineering applications. Engineering models are in general nonlinear models where the response of some appropriate engineering variable depends in a nonlinear manner on the - plication of some independent parameter. It is certainly true that for many types of engineering models it is sufficient to approximate the real physical world by some linear model. However, when engineering environments are pushed to - treme conditions, nonlinear effects are always encountered. It is also such - treme conditions that are of major importance in determining the reliability or failure limits of engineering systems. Hence it is essential than engineers have a toolbox of modeling techniques that can be used to model nonlinear engineering systems. Such a set of basic numerical methods is the topic of this book. For each subject area treated, nonlinear models are incorporated into the discussion from the very beginning and linear models are simply treated as special cases of more general nonlinear models. This is a basic and fundamental difference in this book from most books on numerical methods.


Nonlinear Dynamics of Structures

Nonlinear Dynamics of Structures

Author: Sergio Oller

Publisher: Springer

Published: 2014-09-04

Total Pages: 203

ISBN-13: 3319051946

DOWNLOAD EBOOK

This book lays the foundation of knowledge that will allow a better understanding of nonlinear phenomena that occur in structural dynamics. This work is intended for graduate engineering students who want to expand their knowledge on the dynamic behavior of structures, specifically in the nonlinear field, by presenting the basis of dynamic balance in non‐linear behavior structures due to the material and kinematics mechanical effects. Particularly, this publication shows the solution of the equation of dynamic equilibrium for structure with nonlinear time‐independent materials (plasticity, damage and frequencies evolution), as well as those time dependent non‐linear behavior materials (viscoelasticity and viscoplasticity). The convergence conditions for the non‐linear dynamic structure solution are studied and the theoretical concepts and its programming algorithms are presented.


Non-Linear Finite Element Analysis in Structural Mechanics

Non-Linear Finite Element Analysis in Structural Mechanics

Author: Wilhelm Rust

Publisher: Springer

Published: 2015-02-18

Total Pages: 367

ISBN-13: 3319133802

DOWNLOAD EBOOK

This monograph describes the numerical analysis of non-linearities in structural mechanics, i.e. large rotations, large strain (geometric non-linearities), non-linear material behaviour, in particular elasto-plasticity as well as time-dependent behaviour, and contact. Based on that, the book treats stability problems and limit-load analyses, as well as non-linear equations of a large number of variables. Moreover, the author presents a wide range of problem sets and their solutions. The target audience primarily comprises advanced undergraduate and graduate students of mechanical and civil engineering, but the book may also be beneficial for practising engineers in industry.


Numerical Methods for Unconstrained Optimization and Nonlinear Equations

Numerical Methods for Unconstrained Optimization and Nonlinear Equations

Author: J. E. Dennis, Jr.

Publisher: SIAM

Published: 1996-12-01

Total Pages: 394

ISBN-13: 9781611971200

DOWNLOAD EBOOK

This book has become the standard for a complete, state-of-the-art description of the methods for unconstrained optimization and systems of nonlinear equations. Originally published in 1983, it provides information needed to understand both the theory and the practice of these methods and provides pseudocode for the problems. The algorithms covered are all based on Newton's method or "quasi-Newton" methods, and the heart of the book is the material on computational methods for multidimensional unconstrained optimization and nonlinear equation problems. The republication of this book by SIAM is driven by a continuing demand for specific and sound advice on how to solve real problems. The level of presentation is consistent throughout, with a good mix of examples and theory, making it a valuable text at both the graduate and undergraduate level. It has been praised as excellent for courses with approximately the same name as the book title and would also be useful as a supplemental text for a nonlinear programming or a numerical analysis course. Many exercises are provided to illustrate and develop the ideas in the text. A large appendix provides a mechanism for class projects and a reference for readers who want the details of the algorithms. Practitioners may use this book for self-study and reference. For complete understanding, readers should have a background in calculus and linear algebra. The book does contain background material in multivariable calculus and numerical linear algebra.


Nonlinear Structural Engineering

Nonlinear Structural Engineering

Author: Demeter G. Fertis

Publisher: Springer Science & Business Media

Published: 2007-05-05

Total Pages: 347

ISBN-13: 3540329765

DOWNLOAD EBOOK

This book concentrates on the nonlinear static and dynamic analysis of structures and structural components that are widely used in everyday engineering applications. It presents unique methods for nonlinear problems which permits the correct usage of powerful linear methods. Every topic is thoroughly explained and includes numerical examples. The new concepts, theories and methods introduced simplify the solution of the complex nonlinear problems.


Finite Elements of Nonlinear Continua

Finite Elements of Nonlinear Continua

Author: J. T. Oden

Publisher: Courier Corporation

Published: 2013-04-15

Total Pages: 517

ISBN-13: 0486317900

DOWNLOAD EBOOK

Geared toward undergraduate and graduate students, this text extends applications of the finite element method from linear problems in elastic structures to a broad class of practical, nonlinear problems in continuum mechanics. It treats both theory and applications from a general and unifying point of view. The text reviews the thermomechanical principles of continuous media and the properties of the finite element method, and then brings them together to produce discrete physical models of nonlinear continua. The mathematical properties of these models are analyzed, along with the numerical solution of the equations governing the discrete model. Though the theory and methods are sufficiently general to be applied to any nonlinear problem, emphasis has been placed on problems in finite elasticity, viscoelasticity, heat conduction, and thermoviscoelasticity. Problems in rarefied gas dynamics and nonlinear partial differential equations are also examined. Other topics include topological properties of finite element models, applications to linear and nonlinear boundary value problems, and discrete models of nonlinear thermomechanical behavior of dissipative media. This comprehensive text is valuable not only to students of structural analysis and continuum mechanics but also to professionals researching the numerical analysis of continua


The Finite Element Method for Solid and Structural Mechanics

The Finite Element Method for Solid and Structural Mechanics

Author: O. C. Zienkiewicz

Publisher: Elsevier

Published: 2005-08-09

Total Pages: 653

ISBN-13: 0080455581

DOWNLOAD EBOOK

This is the key text and reference for engineers, researchers and senior students dealing with the analysis and modelling of structures – from large civil engineering projects such as dams, to aircraft structures, through to small engineered components. Covering small and large deformation behaviour of solids and structures, it is an essential book for engineers and mathematicians. The new edition is a complete solids and structures text and reference in its own right and forms part of the world-renowned Finite Element Method series by Zienkiewicz and Taylor. New material in this edition includes separate coverage of solid continua and structural theories of rods, plates and shells; extended coverage of plasticity (isotropic and anisotropic); node-to-surface and 'mortar' method treatments; problems involving solids and rigid and pseudo-rigid bodies; and multi-scale modelling. - Dedicated coverage of solid and structural mechanics by world-renowned authors, Zienkiewicz and Taylor - New material including separate coverage of solid continua and structural theories of rods, plates and shells; extended coverage for small and finite deformation; elastic and inelastic material constitution; contact modelling; problems involving solids, rigid and discrete elements; and multi-scale modelling


Nonlinear Analysis of Structures (1997)

Nonlinear Analysis of Structures (1997)

Author: Muthukrishnan Sathyamoorthy

Publisher: CRC Press

Published: 2017-11-22

Total Pages: 640

ISBN-13: 1351359827

DOWNLOAD EBOOK

Nonlinear Analysis of Structures presents a complete evaluation of the nonlinear static and dynamic behavior of beams, rods, plates, trusses, frames, mechanisms, stiffened structures, sandwich plates, and shells. These elements are important components in a wide variety of structures and vehicles such as spacecraft and missiles, underwater vessels and structures, and modern housing. Today's engineers and designers must understand these elements and their behavior when they are subjected to various types of loads. Coverage includes the various types of nonlinearities, stress-strain relations and the development of nonlinear governing equations derived from nonlinear elastic theory. This complete guide includes both mathematical treatment and real-world applications, with a wealth of problems and examples to support the text. Special topics include a useful and informative chapter on nonlinear analysis of composite structures, and another on recent developments in symbolic computation. Designed for both self-study and classroom instruction, Nonlinear Analysis of Structures is also an authoritative reference for practicing engineers and scientists. One of the world's leaders in the study of nonlinear structural analysis, Professor Sathyamoorthy has made significant research contributions to the field of nonlinear mechanics for twenty-seven years. His foremost contribution to date has been the development of a unique transverse shear deformation theory for plates undergoing large amplitude vibrations and the examination of multiple mode solutions for plates. In addition to his notable research, Professor Sathyamoorthy has also developed and taught courses in the field at universities in India, Canada, and the United States.