This book is composed of two parts: First part describes basics in numerical relativity, that is, the formulations and methods for a solution of Einstein's equation and general relativistic matter field equations. This part will be helpful for beginners of numerical relativity who would like to understand the content of numerical relativity and its background. The second part focuses on the application of numerical relativity. A wide variety of scientific numerical results are introduced focusing in particular on the merger of binary neutron stars and black holes.
Understanding star formation is one of the key fields in present-day astrophysics. This book treats a wide variety of the physical processes involved, as well as the main observational discoveries, with key points being discussed in detail. The current star formation in our galaxy is emphasized, because the most detailed observations are available for this case. The book presents a comparison of the various scenarios for star formation, discusses the basic physics underlying each one, and follows in detail the history of a star from its initial state in the interstellar gas to its becoming a condensed object in equilibrium. Both theoretical and observational evidence to support the validity of the general evolutionary path are presented, and methods for comparing the two are emphasized. The author is a recognized expert in calculations of the evolution of protostars, the structure and evolution of disks, and stellar evolution in general. This book will be of value to graduate students in astronomy and astrophysics as well as to active researchers in the field.
Dense stellar systems lie at the interface between dynamics, stellar evolution, and galaxy formation, and they provide us with an ideal laboratory to understand many different aspects of these important fields as well as to explore the interplay between them. The complete study of dense stellar systems is a very challenging task which requires the collaboration and the exchange of ideas of astronomers and physicists with observational and theoretical expertise in galactic and extra-galactic astronomy, stellar dynamics, hydrodynamics, stellar evolution, as well as knowledge of many aspects of computational physics. IAU Symposium 246 brought together experts in all these areas to cover the broad field of dense stellar systems with particular emphasis on the interplay between them and on the comparison between observations and simulations. This volume provides a complete review of the most recent studies in this topical research.
Astrophysical Recipes: The art of AMUSE delves into the ways in which computational science and astrophysics are connected and how the bridge between observation and theory are understood. This book provides a unique outline of the basic principles of performing simulations for astrophysical phenomena, in order to better increase and understand these observations and theories.
Since it was first published in 1987, Galactic Dynamics has become the most widely used advanced textbook on the structure and dynamics of galaxies and one of the most cited references in astrophysics. Now, in this extensively revised and updated edition, James Binney and Scott Tremaine describe the dramatic recent advances in this subject, making Galactic Dynamics the most authoritative introduction to galactic astrophysics available to advanced undergraduate students, graduate students, and researchers. Every part of the book has been thoroughly overhauled, and many sections have been completely rewritten. Many new topics are covered, including N-body simulation methods, black holes in stellar systems, linear stability and response theory, and galaxy formation in the cosmological context. Binney and Tremaine, two of the world's leading astrophysicists, use the tools of theoretical physics to describe how galaxies and other stellar systems work, succinctly and lucidly explaining theoretical principles and their applications to observational phenomena. They provide readers with an understanding of stellar dynamics at the level needed to reach the frontiers of the subject. This new edition of the classic text is the definitive introduction to the field. ? A complete revision and update of one of the most cited references in astrophysics Provides a comprehensive description of the dynamical structure and evolution of galaxies and other stellar systems Serves as both a graduate textbook and a resource for researchers Includes 20 color illustrations, 205 figures, and more than 200 problems Covers the gravitational N-body problem, hierarchical galaxy formation, galaxy mergers, dark matter, spiral structure, numerical simulations, orbits and chaos, equilibrium and stability of stellar systems, evolution of binary stars and star clusters, and much more Companion volume to Galactic Astronomy, the definitive book on the phenomenology of galaxies and star clusters
'Protostars and Planets V' builds on the latest results from recent advances in ground and space-based astronomy and in numerical computing techniques to offer the most detailed and up-to-date picture of star and planet formation - including the formation and early evolution of our own solar system.
These are the proceedings of international conference on Numerical As trophysics 1998 (NAP98), held at National Olympic Memorial Youth Cen ter, in Tokyo, Japan in the period of March 10 - 13, 1998, and hosted by the National Astronomical Observatory, Japan (NAOJ). In the last decade numerical simulations have grown up as a major tool for astrophysics. Numerical simulations give us invaluable informa tion on complex systems and physical processes under extreme conditions which can be neither realized by experiments nor directly observed. Super computers and special purpose computers may work as very large telescopes and special purpose telescopes for theoretical astrophysics, respectively. Nu merical astrophysics ranks with other tool-oriented astronomy such as ra dio astronomy, infrared astronomy, ultraviolet astronomy, X-ray astronomy, and ')'-ray astronomy. This conference, NAP98, was planned to explore recent advances in astrophysics aided by numerical simulations. The subjects of the confer ence included the large-scale structure formation, galaxy formation and evolution, star and planets formation, accretion disks, jets, gravitational wave emission, and plasma physics. NAP98 had also sessions on numerical methods and computer science. The conference was attended by 184 sci entists from 21 countries. We enjoyed excellent talks, posters, videos, and discussions: there are 40 oral presentations, 96 posters and 16 video pre sentations. We hope that these proceedings and accompanying CD-ROM replay the friendly but inspiring atmosphere of the conference.
This book is a comprehensive treatment of star formation, one of the most active fields of modern astronomy. The reader is guided through the subject in a logically compelling manner. Starting from a general description of stars and interstellar clouds, the authors delineate the earliest phases of stellar evolution. They discuss formation activity not only in the Milky Way, but also in other galaxies, both now and in the remote past. Theory and observation are thoroughly integrated, with the aid of numerous figures and images. In summary, this volume is an invaluable resource, both as a text for physics and astronomy graduate students, and as a reference for professional scientists.