Numerical Simulation of 3-D Incompressible Unsteady Viscous Laminar Flows

Numerical Simulation of 3-D Incompressible Unsteady Viscous Laminar Flows

Author: Michel Deville

Publisher: Vieweg+Teubner Verlag

Published: 2013-03-09

Total Pages: 234

ISBN-13: 3663002217

DOWNLOAD EBOOK

The GAMM-Commi ttee for Numerical Methods in Fluid Mechanics (GAMM-Fachausschuss für Numerische Methoden in der Strömungsmechanik) has sponsored the organization of a GAMM Workshop dedicated to the numerical simulation of three dimensional incompressible unsteady viscous laminar flows to test Navier-Stokes solvers. The Workshop was held in Paris from June 12th to June 14th, 1991 at the Ecole Nationale Superieure des Arts et Metiers. Two test problems were set up. The first one is the flow in a driven-lid parallelepipedic cavity at Re = 3200 . The second problem is a flow around a prolate spheroid at incidence. These problems are challenging as fully transient solutions are expected to show up. The difficulties for meaningful calculations come from both space and temporal discretizations which have to be sufficiently accurate to resol ve detailed structures like Taylor-Görtler-like vortices and the appropriate time development. Several research teams from academia and industry tackled the tests using different formulations (veloci ty-pressure, vortici ty velocity), different numerical methods (finite differences, finite volumes, finite elements), various solution algorithms (splitting, coupled ...), various solvers (direct, iterative, semi-iterative) with preconditioners or other numerical speed-up procedures. The results show some scatter and achieve different levels of efficiency. The Workshop was attended by about 25 scientists and drove much interaction between the participants. The contributions in these proceedings are presented in alphabetical order according to the first author, first for the cavi ty problem and then for the prolate spheroid problem. No definite conclusions about benchmark solutions can be drawn.


Numerical Simulations Of Incompressible Flows

Numerical Simulations Of Incompressible Flows

Author: Mohamed M Hafez

Publisher: World Scientific

Published: 2003-01-23

Total Pages: 708

ISBN-13: 9814486396

DOWNLOAD EBOOK

This book consists of 37 articles dealing with simulation of incompressible flows and applications in many areas. It covers numerical methods and algorithm developments as well as applications in aeronautics and other areas. It represents the state of the art in the field.


Numerical Simulation of Incompressible Viscous Flow

Numerical Simulation of Incompressible Viscous Flow

Author: Roland Glowinski

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2022-09-20

Total Pages: 236

ISBN-13: 3110785056

DOWNLOAD EBOOK

This book on finite element-based computational methods for solving incompressible viscous fluid flow problems shows readers how to apply operator splitting techniques to decouple complicated computational fluid dynamics problems into a sequence of relatively simpler sub-problems at each time step, such as hemispherical cavity flow, cavity flow of an Oldroyd-B viscoelastic flow, and particle interaction in an Oldroyd-B type viscoelastic fluid. Efficient and robust numerical methods for solving those resulting simpler sub-problems are introduced and discussed. Interesting computational results are presented to show the capability of methodologies addressed in the book.


Computation of Three-Dimensional Complex Flows

Computation of Three-Dimensional Complex Flows

Author: Michel Deville

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 406

ISBN-13: 3322898385

DOWNLOAD EBOOK

Der Sammelband enthält Beiträge einer Tagung über die Simulation von dreidimensionalen Flüssigkeiten. Sie geben einen Überblick über den Stand des Wissens auf dem Gebiet der numerischen Simulation der Turbulenz, angewandt auf eine weite Spanne von Problemen wie Aerodynamik, Nicht-Newtonsche Flüssigkeiten, Konvektion.This volume contains the material presented at the IMACS-COST Conference on CFD, Three-Dimensional Complex Flows, held in Lausanne (Switzerland), September 13 - 15, 1995. It gives an overview of the current state of numerical simulation and turbulence modelling applied to a wide range of fluid flow problems such as an example aerodynamics, non-Newtonian flows, transition, thermal convection.


Handbook of Numerical Analysis

Handbook of Numerical Analysis

Author: Philippe G. Ciarlet

Publisher: Gulf Professional Publishing

Published: 1990

Total Pages: 1187

ISBN-13: 9780444512246

DOWNLOAD EBOOK

Includes following subjects: Solution of equations in Rn, Finite difference methods, Finite element methods, Techniques of scientific computing, Optimization theory and systems science, Numerical methods for fluids, Numerical methods for solids, Specific applications


Numerical Simulation of Compressible Flow Using a Velocity/vorticity/pressure Formulation

Numerical Simulation of Compressible Flow Using a Velocity/vorticity/pressure Formulation

Author: Ben Chacon

Publisher:

Published: 2013

Total Pages:

ISBN-13: 9781303791697

DOWNLOAD EBOOK

The fundamental equations for compressible flow are solved using a velocity - pressure - vorticity formulation producing a solution that satisfies continuity and vorticity definitions up to machine accuracy. Chapter 1 reviews many algorithms used to solve this problem. Unlike those methods, no pressure - velocity relation or artificial compressibility is assumed in the present formulation, so the equations for kinematics, pressure and momentum are decoupled independent building blocks in the iterative process. As a consequence, the resulting modular algorithm can be used directly for compressible or incompressible flows, contrasting with other current techniques. Moreover the present formulation also applies to two-dimensional and three-dimensional, structured and unstructured grids without any changes, even though only the two-dimensional version was implemented. In Chapter 2, the original formulation is described. A functional minimization technique is used to discretize the kinematics equations, mimicking continuous methods used in the field of functional analysis and providing a common framework to understand, model and implement the solution algorithm. Suitable preconditioning and radial interpolation techniques are employed to balance precision and computational speed. The Poisson equation for pressure is solved similarly by minimizing a suitable functional. The momentum equations are then solved using a finite volume approach adding a controlled amount of artificial viscosity according to mesh size and Reynolds number, resulting in a stable calculation. The vorticity is then obtained as the curl of the velocity. Temperature is similarly computed from the energy equation in an outer loop. Suitable adjustments to pressure and temperature enable the ideal gas equation to fit both the compressible and incompressible paradigmsSubsequent chapters deal with validation, applying the computer efficient implementation of the algorithm to a variety of well documented aerodynamic benchmark problems. Examples include compressible and incompressible flow, steady and unsteady problems and flow over cylinders and airfoils over a variety of Reynolds and subsonic Mach numbers.