Numerical Simulation of Reactive Flow in Hot Aquifers

Numerical Simulation of Reactive Flow in Hot Aquifers

Author: Christoph Clauser

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 339

ISBN-13: 3642556841

DOWNLOAD EBOOK

This product, consisting of a CD-ROM and a book, deals with the numerical simulation of reactive transport in porous media using the simulation package SHEMAT/Processing SHEMAT. SHEMAT (Simulator for HEat and MAss Transport) is an easy-to-use, general-purpose reactive transport simulation code for a wide variety of thermal and hydrogeological problems in two or three dimensions. The book is a richly documented manual for users of this software which discusses in detail the coded physical and chemical equations. Thus, it provides the in-depth background required by those who want to apply the code for solving advanced technical and scientific problems. The enclosed companion CD-ROM contains the software and data for all of the case studies. The software includes user-friendly pre- and post-processors which make it very easy to set up a model, run it and view the results, all from one platform. Therefore, the software is also very suitable for academic or technical "hands-on" courses for simulating flow, transport of heat and mass, and chemical reactions in porous media. You can find a link to the updated software on springer.com .


Reactive Flow Modeling of Hydrothermal Systems

Reactive Flow Modeling of Hydrothermal Systems

Author: Michael Kühn

Publisher: Springer

Published: 2004-03-24

Total Pages: 284

ISBN-13: 3540396780

DOWNLOAD EBOOK

The book introduces the topic of geochemical modeling of fluids in subsurface and hydrothermal systems. The intention is to serve as a textbook for graduate students in aqueous, environmental and groundwater geochemistry, despite the fact that its focus is on the special topic of geochemistry in hydrothermal systems, it also provides new insights for experienced researchers with respect to the topic of reactive transport. The overall purpose is to give the reader an understanding of the processes that control the chemical composition of waters in hydrothermal systems and to highlight the interfaces between chemistry, geothermics and hydrogeology. From the reviews: "..is a nice, compact introduction to the principles of modeling coupled fluid flow and fluid-mineral reactions in active geothermal systems, as used for heating and electricity generation." ( Christoph A. Heinrich, ECONOMIC GEOLOGY, June 2004)


Thermal Use of Shallow Groundwater

Thermal Use of Shallow Groundwater

Author: Fritz Stauffer

Publisher: CRC Press

Published: 2013-12-12

Total Pages: 290

ISBN-13: 1466560207

DOWNLOAD EBOOK

The thermal use of the shallow subsurface is increasingly being promoted and implemented as one of many promising measures for saving energy. A series of questions arises concerning the design and management of underground and groundwater heat extraction systems, such as the sharing of the thermal resource and the assessment of its long-term potent


Geochemical Modeling of Groundwater, Vadose and Geothermal Systems

Geochemical Modeling of Groundwater, Vadose and Geothermal Systems

Author: Jochen Bundschuh

Publisher: CRC Press

Published: 2011-12-23

Total Pages: 332

ISBN-13: 1439870535

DOWNLOAD EBOOK

Geochemical modeling is an important tool in environmental studies, and in the areas of subsurface and surface hydrology, pedology, water resources management, mining geology, geothermal resources, hydrocarbon geology, and related areas dealing with the exploration and extraction of natural resources. The book fills a gap in the literature through


Unsaturated Soils: Numerical and Theoretical Approaches

Unsaturated Soils: Numerical and Theoretical Approaches

Author: Tom Schanz

Publisher: Springer Science & Business Media

Published: 2005-12-28

Total Pages: 365

ISBN-13: 3540267379

DOWNLOAD EBOOK

These proceedings document the various papers delivered and partially presented at the International Conference “From experimental evidence towards numerical modeling of unsaturated soils,” which was held in Weimar (Germany) during 18-19 September 2003. The conference was organized under the auspices of the International Society of Soil Mechanics and Geotechnical Engineering (ISSMGE) and the National German G- technical Society (DGGT). The need to understand the behavior of unsaturated soils is becoming exclusively - sential for the geotechnical engineers and designers. In the last three decades many - searchers have made significant contribution to the understanding of the unsaturated soil mechanics. Nevertheless, application of the subject to variety of new problems still - quires our attention. This International conference is a mere attempt to unite researchers and engineers in geotechnical engineering and to discuss about the problems associated with the unsaturated soils. Doing so the objectives of these lecture notes are as follows: - to promote unsaturated soil mechanics for practical application, - to exchange experiences in experimental unsaturated soil mechanics and numerical modeling, - to discuss application of unsaturated soil mechanics to variety of problems. In other words, we could also name these two volumes as “From theory to daily pr- tice”. I would like to extend my deep sense of appreciation as the editor and the Head of the organizing committee, to many persons who have contributed either directly or indirectly to organize the International conference and to finalize these proceedings.


Geothermal Power Generation

Geothermal Power Generation

Author: Ronald DiPippo

Publisher: Elsevier

Published: 2024-10-11

Total Pages: 977

ISBN-13: 044324751X

DOWNLOAD EBOOK

Geothermal Power Generation, New Developments and Innovations, Second Edition provides an update to the advanced energy technologies that are urgently required to meet the challenges of economic development, climate change mitigation, and energy security. Edited by respected and leading experts in the field, this book provides a comprehensive overview of the major aspects of geothermal power production. Chapters cover resource discovery, resource characterization, energy conversion systems, design, economic considerations, and a range of fascinating and updated case studies from across the world.Geothermal resources are considered renewable and are currently the only renewable source able to generate baseload electricity while producing very low levels of greenhouse gas emissions, thus playing a key role in future energy needs. - Provides readers with a comprehensive and systematic overview of geothermal power generation - Presents an update to advanced energy technologies that are urgently required to meet the challenges of economic development, climate change mitigation, and energy security - Edited by authorities in the field and contributed to by global experts in their areas - Supports sustainability and the United Nations Sustainable Development Goals (UN SDGs) 7, 9, 11 and 13


Reservoir Analysis and Parameter Estimation Constrained to Temperature, Pressure and Flowrate Histories

Reservoir Analysis and Parameter Estimation Constrained to Temperature, Pressure and Flowrate Histories

Author: Obinna Onyinye Duru

Publisher: Stanford University

Published: 2011

Total Pages: 399

ISBN-13:

DOWNLOAD EBOOK

Acquisition of downhole temperature measurements, in addition to production data, is routine in production systems. The temperature measurements, which are currently being used for pressure data correction, are cheap to acquire, accurate and have good resolutions. The answer to the question of how useful these temperature measurements can be, beyond the current utilization for pressure correction, was the goal of this research work. In the first part of this work, a mechanistic multiphysics and multiscale model for thermal transport process in a porous medium was developed, accounting for compressibility and viscous dissipation effects like Joule-Thomson and adiabatic expansion phenomena. To validate the model, a laboratory experiment was designed to allow for a controlled flow of air through a porous core, while measuring the temperature changes at different locations. The data acquired were used to verify the model and perform sensitivity studies, and the results showed functional dependencies of the model on useful reservoir parameters such as porosity, flow velocities and thermal properties of the rock and fluid; and these functional dependencies revealed the potential of temperature data as an additional source of constraining data in temporal and distributed reservoir parameter estimation. In addition, the temperature model was well suited for the application of a number of analytical tools that lead to the extraction of these useful reservoir characteristic information. In the second part, using multiresolution methods based on the second derivative of the Gaussian kernel, temperature measurements were combined with pressure data to improve the identification of transients in data as well as yield better behavioral filtering. Until now, only pressure measurements are used and this has shown to be unreliable. The approach developed here exploited the independence between the pressure and temperature measurements to constrain the estimation of the location of the breakpoints. The third segment of this research exploited the convective nature of thermal transport during flow to characterize near wellbore properties such as the extent of damage around a well (or extent of stimulation). The model lent itself to the application of the semianalytical Operator Splitting decomposition technique and as a result, the solution of the advection component could be separated and used to estimate near-wellbore structures such as damage or stimulation radius and permeability. As temperature measurements are an independent source of measurements, a joint inversion of production data and temporal temperature measurements, taken from multiwell production systems, showed a significant improvement in the reservoir state estimation problem, using state space estimation techniques like the Ensemble Kalman filter. This marked improvement was over the results from current approaches which match only production data. Results showed that introducing temperature improved the resolution of both permeability and porosity fields significantly. The last part of this research dealt with the estimation of flowrate, using only temperature measurements. The temperature model showed a strong functional dependence of temperature on flowrates at high Peclet number. By deconvolution, the advective flow kernel was separated from the diffusion part, and the complete flowrate history reconstructed from this kernel. Results showed that in synthetic and field cases, this extracted flowrate compared well with the true flowrate measurements. The philosophical significance of this work is that low-cost temperature measurements, which are measured routinely in producing wells, are a promising source of additional data for further constraining of reservoir characterization and optimization problems.


Shallow Geothermal Energy

Shallow Geothermal Energy

Author: Alejandro García Gil

Publisher: Springer Nature

Published: 2022-01-31

Total Pages: 362

ISBN-13: 3030922588

DOWNLOAD EBOOK

This book is the outcome of more than a decade of research and technical development activities at Spain’s Geological Survey (IGME) concerning shallow geothermal energy, which were pursued in collaboration with other public bodies and European entities. It presents a compilation of papers on the theoretical foundations of, and practical aspects needed to understand the thermal regime of the topmost subsoil, up to 400 m deep, and the exceptional properties that this underground environment offers, which make it the ideal thermal reservoir for heating, ventilation, and air conditioning (HVAC). In the book’s first section, the basic theory of thermodynamics as applied to shallow geothermal energy, heat transfer and fluid mechanics in the geological porous medium is developed. The nature of the subsoil’s thermal regime in general and in the urban environment in particular is described. The second section introduces readers to the fundamental aspects of thermal installations equipped with geothermal heat pumps, describes the types of geothermal exchangers most commonly used, and reviews the techniques used to obtain the thermal parameters of the terrain. It also discusses the potential environmental impacts of shallow geothermal activity and corresponding management strategies, as well as the legal aspects of its regulation for the governance of shallow geothermal resources in the EU in general and Spain in particular. In closing, the book highlights examples of the methodologies’ applications, developed by IGME in the city of Zaragoza and the Canary Islands. The theoretical foundations, systematics and concrete applications make the book a valuable reference source for hydrogeologists, engineers and specialized technicians alike.


Energy Storage

Energy Storage

Author: Md. Rafiqul Islam Sheikh

Publisher: BoD – Books on Demand

Published: 2010-09-27

Total Pages: 154

ISBN-13: 9533071192

DOWNLOAD EBOOK

Electricity is more versatile in use because it is a highly ordered form of energy that can be converted efficiently into other forms. However, the disadvantage of electricity is that it cannot be easily stored on a large scale. One of the distinctive characteristics of the electric power sector is that the amount of electricity that can be generated is relatively fixed over short periods of time, although demand for electricity fluctuates throughout the day. Almost all electrical energy used today is consumed as it is generated. This poses no hardship in conventional power plants, where the fuel consumption is varied with the load requirements. However, the photovoltaic and wind, being intermittent sources of power, cannot meet the load demand all of the time. Wherever intermittent power sources reach high levels of grid penetration, energy storage becomes one option to provide reliable energy supplies. These devices can help to make renewable energy more smooth and reliable, though the power output cannot be controlled by the grid operators. They can balance micro grids to achieve a good match between generation and load demand, which can further regulate the voltage and frequency. Also, it can significantly improve the load availability, a key requirement for any power system. The energy storage, therefore, is a desired feature to incorporate with renewable power systems, particularly in stand alone power plants. The purpose of this book is twofold. At first, for the interested researcher it shows the importance of different Energy Storage devices, but secondly, and more importantly, it forms a first attempt at dissemination of knowledge to the wider non-expert community who may wish to consider Energy Storage device for specific application. Thus this book will be helpful to provide an indication of the tools necessary for an assessment to be made Energy Storage device more powerful.