Macroscopic Transport Equations for Rarefied Gas Flows

Macroscopic Transport Equations for Rarefied Gas Flows

Author: Henning Struchtrup

Publisher: Springer Science & Business Media

Published: 2005-06-15

Total Pages: 280

ISBN-13: 9783540245421

DOWNLOAD EBOOK

The well known transport laws of Navier-Stokes and Fourier fail for the simulation of processes on lengthscales in the order of the mean free path of a particle that is when the Knudsen number is not small enough. Thus, the proper simulation of flows in rarefied gases requires a more detailed description. This book discusses classical and modern methods to derive macroscopic transport equations for rarefied gases from the Boltzmann equation, for small and moderate Knudsen numbers, i.e. at and above the Navier-Stokes-Fourier level. The main methods discussed are the classical Chapman-Enskog and Grad approaches, as well as the new order of magnitude method, which avoids the short-comings of the classical methods, but retains their benefits. The relations between the various methods are carefully examined, and the resulting equations are compared and tested for a variety of standard problems. The book develops the topic starting from the basic description of an ideal gas, over the derivation of the Boltzmann equation, towards the various methods for deriving macroscopic transport equations, and the test problems which include stability of the equations, shock waves, and Couette flow.


Scientific and Technical Aerospace Reports

Scientific and Technical Aerospace Reports

Author:

Publisher:

Published: 1973

Total Pages: 840

ISBN-13:

DOWNLOAD EBOOK

Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.


Stochastic Numerics for the Boltzmann Equation

Stochastic Numerics for the Boltzmann Equation

Author: Sergej Rjasanow

Publisher: Springer Science & Business Media

Published: 2005-11-04

Total Pages: 266

ISBN-13: 3540276890

DOWNLOAD EBOOK

Stochastic numerical methods play an important role in large scale computations in the applied sciences. The first goal of this book is to give a mathematical description of classical direct simulation Monte Carlo (DSMC) procedures for rarefied gases, using the theory of Markov processes as a unifying framework. The second goal is a systematic treatment of an extension of DSMC, called stochastic weighted particle method. This method includes several new features, which are introduced for the purpose of variance reduction (rare event simulation). Rigorous convergence results as well as detailed numerical studies are presented.


Modeling and Computational Methods for Kinetic Equations

Modeling and Computational Methods for Kinetic Equations

Author: Pierre Degond

Publisher: Springer Science & Business Media

Published: 2004-04-07

Total Pages: 372

ISBN-13: 9780817632540

DOWNLOAD EBOOK

In recent years kinetic theory has developed in many areas of the physical sciences and engineering, and has extended the borders of its traditional fields of application. New applications in traffic flow engineering, granular media modeling, and polymer and phase transition physics have resulted in new numerical algorithms which depart from traditional stochastic Monte--Carlo methods. This monograph is a self-contained presentation of such recently developed aspects of kinetic theory, as well as a comprehensive account of the fundamentals of the theory. Emphasizing modeling techniques and numerical methods, the book provides a unified treatment of kinetic equations not found in more focused theoretical or applied works. The book is divided into two parts. Part I is devoted to the most fundamental kinetic model: the Boltzmann equation of rarefied gas dynamics. Additionally, widely used numerical methods for the discretization of the Boltzmann equation are reviewed: the Monte--Carlo method, spectral methods, and finite-difference methods. Part II considers specific applications: plasma kinetic modeling using the Landau--Fokker--Planck equations, traffic flow modeling, granular media modeling, quantum kinetic modeling, and coagulation-fragmentation problems. Modeling and Computational Methods of Kinetic Equations will be accessible to readers working in different communities where kinetic theory is important: graduate students, researchers and practitioners in mathematical physics, applied mathematics, and various branches of engineering. The work may be used for self-study, as a reference text, or in graduate-level courses in kinetic theory and its applications.


Rarefied Gas Dynamics

Rarefied Gas Dynamics

Author: Carlo Cercignani

Publisher: Cambridge University Press

Published: 2000-02-28

Total Pages: 348

ISBN-13: 9780521659925

DOWNLOAD EBOOK

The aim of this book is to present the concepts, methods and applications of kinetic theory to rarefied gas dynamics. After introducing the basic tools, problems in plane geometry are treated using approximation techniques (perturbation and numerical methods). These same techniques are later used to deal with two- and three-dimensional problems. The models include not only monatomic but also polyatomic gases, mixtures, chemical reactions. A special chapter is devoted to evaporation and condensation phenomena. Each section is accompanied by problems which are mainly intended to demonstrate the use of the material in the text and to outline additional subjects, results and equations. This will help ensure that the book can be used for a range of graduate courses in aerospace engineering or applied mathematics.


Rarefied Gas Dynamics

Rarefied Gas Dynamics

Author: Felix Sharipov

Publisher: John Wiley & Sons

Published: 2016-02-23

Total Pages: 330

ISBN-13: 352741326X

DOWNLOAD EBOOK

Aimed at both researchers and professionals who deal with this topic in their routine work, this introduction provides a coherent and rigorous access to the field including relevant methods for practical applications. No preceding knowledge of gas dynamics is assumed.


Direct Methods for Solving the Boltzmann Equation and Study of Nonequilibrium Flows

Direct Methods for Solving the Boltzmann Equation and Study of Nonequilibrium Flows

Author: V.V. Aristov

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 305

ISBN-13: 9401008663

DOWNLOAD EBOOK

This book is concerned with the methods of solving the nonlinear Boltz mann equation and of investigating its possibilities for describing some aerodynamic and physical problems. This monograph is a sequel to the book 'Numerical direct solutions of the kinetic Boltzmann equation' (in Russian) which was written with F. G. Tcheremissine and published by the Computing Center of the Russian Academy of Sciences some years ago. The main purposes of these two books are almost similar, namely, the study of nonequilibrium gas flows on the basis of direct integration of the kinetic equations. Nevertheless, there are some new aspects in the way this topic is treated in the present monograph. In particular, attention is paid to the advantages of the Boltzmann equation as a tool for considering nonequi librium, nonlinear processes. New fields of application of the Boltzmann equation are also described. Solutions of some problems are obtained with higher accuracy. Numerical procedures, such as parallel computing, are in vestigated for the first time. The structure and the contents of the present book have some com mon features with the monograph mentioned above, although there are new issues concerning the mathematical apparatus developed so that the Boltzmann equation can be applied for new physical problems. Because of this some chapters have been rewritten and checked again and some new chapters have been added.


Molecular Gas Dynamics

Molecular Gas Dynamics

Author: Yoshio Sone

Publisher: Springer Science & Business Media

Published: 2007-10-16

Total Pages: 667

ISBN-13: 081764573X

DOWNLOAD EBOOK

This self-contained book is an up-to-date description of the basic theory of molecular gas dynamics and its various applications. The book, unique in the literature, presents working knowledge, theory, techniques, and typical phenomena in rarefied gases for theoretical development and application. Basic theory is developed in a systematic way and presented in a form easily applied for practical use. In this work, the ghost effect and non-Navier–Stokes effects are demonstrated for typical examples—Bénard and Taylor–Couette problems—in the context of a new framework. A new type of ghost effect is also discussed.


Kinetic Theory of Gases in Shear Flows

Kinetic Theory of Gases in Shear Flows

Author: Vicente Garzó

Publisher: Springer Science & Business Media

Published: 2003-09-30

Total Pages: 372

ISBN-13: 9781402014369

DOWNLOAD EBOOK

The kinetic theory of gases as we know it dates to the paper of Boltzmann in 1872. The justification and context of this equation has been clarified over the past half century to the extent that it comprises one of the most complete examples of many-body analyses exhibiting the contraction from a microscopic to a mesoscopic description. The primary result is that the Boltzmann equation applies to dilute gases with short ranged interatomic forces, on space and time scales large compared to the corresponding atomic scales. Otherwise, there is no a priori limitation on the state of the system. This means it should be applicable even to systems driven very far from its eqUilibrium state. However, in spite of the physical simplicity of the Boltzmann equation, its mathematical complexity has masked its content except for states near eqUilibrium. While the latter are very important and the Boltzmann equation has been a resounding success in this case, the full potential of the Boltzmann equation to describe more general nonequilibrium states remains unfulfilled. An important exception was a study by Ikenberry and Truesdell in 1956 for a gas of Maxwell molecules undergoing shear flow. They provided a formally exact solution to the moment hierarchy that is valid for arbitrarily large shear rates. It was the first example of a fundamental description of rheology far from eqUilibrium, albeit for an unrealistic system. With rare exceptions, significant progress on nonequilibrium states was made only 20-30 years later.