Mathematical Topics In Neutron Transport Theory: New Aspects

Mathematical Topics In Neutron Transport Theory: New Aspects

Author: Mustapha Mokhtar Kharroubi

Publisher: World Scientific

Published: 1997-12-18

Total Pages: 372

ISBN-13: 981449819X

DOWNLOAD EBOOK

This book presents some recent mathematical developments about neutron transport equations. Several different topics are dealt with including regularity of velocity averages, spectral analysis of transport operators, inverse problems, nonlinear problems arising in the stochastic theory of neutron chain fissions, compactness properties of perturbed of c0-semigroups in Banach spaces with applications to transport theory, Miyadera perturbations of c0-semigroups in Banach spaces with applications to singular transport equations, a thorough analysis of the leading eigenelements of transport operators and their approximation, scattering theory. Besides the new problems addressed in this book a unification and extension of the classical spectral analysis of neutron transport equations is given.


Handbook of Nuclear Engineering

Handbook of Nuclear Engineering

Author: Dan Gabriel Cacuci

Publisher: Springer Science & Business Media

Published: 2010-09-14

Total Pages: 3701

ISBN-13: 0387981306

DOWNLOAD EBOOK

This is an authoritative compilation of information regarding methods and data used in all phases of nuclear engineering. Addressing nuclear engineers and scientists at all levels, this book provides a condensed reference on nuclear engineering since 1958.


The Physics of Nuclear Reactors

The Physics of Nuclear Reactors

Author: Serge Marguet

Publisher: Springer

Published: 2018-02-26

Total Pages: 1462

ISBN-13: 3319595601

DOWNLOAD EBOOK

This comprehensive volume offers readers a progressive and highly detailed introduction to the complex behavior of neutrons in general, and in the context of nuclear power generation. A compendium and handbook for nuclear engineers, a source of teaching material for academic lecturers as well as a graduate text for advanced students and other non-experts wishing to enter this field, it is based on the author’s teaching and research experience and his recognized expertise in nuclear safety. After recapping a number of points in nuclear physics, placing the theoretical notions in their historical context, the book successively reveals the latest quantitative theories concerning: • The slowing-down of neutrons in matter • The charged particles and electromagnetic rays • The calculation scheme, especially the simplification hypothesis • The concept of criticality based on chain reactions • The theory of homogeneous and heterogeneous reactors • The problem of self-shielding • The theory of the nuclear reflector, a subject largely ignored in literature • The computational methods in transport and diffusion theories Complemented by more than 400 bibliographical references, some of which are commented and annotated, and augmented by an appendix on the history of reactor physics at EDF (Electricité De France), this book is the most comprehensive and up-to-date introduction to and reference resource in neutronics and reactor theory.


Nuclear Reactor Physics

Nuclear Reactor Physics

Author: Weston M. Stacey

Publisher: John Wiley & Sons

Published: 2018-02-07

Total Pages: 766

ISBN-13: 352781230X

DOWNLOAD EBOOK

The third, revised edition of this popular textbook and reference, which has been translated into Russian and Chinese, expands the comprehensive and balanced coverage of nuclear reactor physics to include recent advances in understanding of this topic. The first part of the book covers basic reactor physics, including, but not limited to nuclear reaction data, neutron diffusion theory, reactor criticality and dynamics, neutron energy distribution, fuel burnup, reactor types and reactor safety. The second part then deals with such physically and mathematically more advanced topics as neutron transport theory, neutron slowing down, resonance absorption, neutron thermalization, perturbation and variational methods, homogenization, nodal and synthesis methods, and space-time neutron dynamics. For ease of reference, the detailed appendices contain nuclear data, useful mathematical formulas, an overview of special functions as well as introductions to matrix algebra and Laplace transforms. With its focus on conveying the in-depth knowledge needed by advanced student and professional nuclear engineers, this text is ideal for use in numerous courses and for self-study by professionals in basic nuclear reactor physics, advanced nuclear reactor physics, neutron transport theory, nuclear reactor dynamics and stability, nuclear reactor fuel cycle physics and other important topics in the field of nuclear reactor physics.


Classical and Modern Numerical Analysis

Classical and Modern Numerical Analysis

Author: Azmy S. Ackleh

Publisher: CRC Press

Published: 2009-07-20

Total Pages: 628

ISBN-13: 1420091581

DOWNLOAD EBOOK

Classical and Modern Numerical Analysis: Theory, Methods and Practice provides a sound foundation in numerical analysis for more specialized topics, such as finite element theory, advanced numerical linear algebra, and optimization. It prepares graduate students for taking doctoral examinations in numerical analysis.The text covers the main areas o


Monte Carlo Methods for Particle Transport

Monte Carlo Methods for Particle Transport

Author: Alireza Haghighat

Publisher: CRC Press

Published: 2020-08-09

Total Pages: 279

ISBN-13: 042958220X

DOWNLOAD EBOOK

Fully updated with the latest developments in the eigenvalue Monte Carlo calculations and automatic variance reduction techniques and containing an entirely new chapter on fission matrix and alternative hybrid techniques. This second edition explores the uses of the Monte Carlo method for real-world applications, explaining its concepts and limitations. Featuring illustrative examples, mathematical derivations, computer algorithms, and homework problems, it is an ideal textbook and practical guide for nuclear engineers and scientists looking into the applications of the Monte Carlo method, in addition to students in physics and engineering, and those engaged in the advancement of the Monte Carlo methods. Describes general and particle-transport-specific automated variance reduction techniques Presents Monte Carlo particle transport eigenvalue issues and methodologies to address these issues Presents detailed derivation of existing and advanced formulations and algorithms with real-world examples from the author’s research activities


Fractional Calculus with Applications for Nuclear Reactor Dynamics

Fractional Calculus with Applications for Nuclear Reactor Dynamics

Author: Santanu Saha Ray

Publisher: CRC Press

Published: 2015-07-29

Total Pages: 232

ISBN-13: 149872728X

DOWNLOAD EBOOK

Introduces Novel Applications for Solving Neutron Transport EquationsWhile deemed nonessential in the past, fractional calculus is now gaining momentum in the science and engineering community. Various disciplines have discovered that realistic models of physical phenomenon can be achieved with fractional calculus and are using them in numerous way


Deterministic Numerical Methods for Unstructured-Mesh Neutron Transport Calculation

Deterministic Numerical Methods for Unstructured-Mesh Neutron Transport Calculation

Author: Liangzhi Cao

Publisher: Woodhead Publishing

Published: 2020-08-30

Total Pages: 294

ISBN-13: 0128182229

DOWNLOAD EBOOK

Deterministic Numerical Methods for Unstructured-Mesh Neutron Transport Calculation presents the latest deterministic numerical methods for neutron transport equations (NTEs) with complex geometry, which are of great demand in recent years due to the rapid development of advanced nuclear reactor concepts and high-performance computational technologies. This book covers the wellknown methods proposed and used in recent years, not only theoretical modeling but also numerical results. This book provides readers with a very thorough understanding of unstructured neutron transport calculations and enables them to develop their own computational codes. The fundamentals, numerical discretization methods, algorithms, and numerical results are discussed. Researchers and engineers from utilities and research institutes are provided with examples on how to model an advanced nuclear reactor, which they can then apply to their own research projects and lab settings. - Combines the theoretical models with numerical methods and results in one complete resource - Presents the latest progress on the topic in an easy-to-navigate format


Computational Methods For Two-phase Flow And Particle Transport (With Cd-rom)

Computational Methods For Two-phase Flow And Particle Transport (With Cd-rom)

Author: Wen Ho Lee

Publisher: World Scientific Publishing Company

Published: 2013-03-22

Total Pages: 471

ISBN-13: 981446029X

DOWNLOAD EBOOK

This book describes mathematical formulations and computational methods for solving two-phase flow problems with a computer code that calculates thermal hydraulic problems related to light water and fast breeder reactors. The physical model also handles the particle and gas flow problems that arise from coal gasification and fluidized beds. The second part of this book deals with the computational methods for particle transport.