Numerical Methods for Roots of Polynomials - Part II

Numerical Methods for Roots of Polynomials - Part II

Author: J.M. McNamee

Publisher: Newnes

Published: 2013-07-19

Total Pages: 749

ISBN-13: 008093143X

DOWNLOAD EBOOK

Numerical Methods for Roots of Polynomials - Part II along with Part I (9780444527295) covers most of the traditional methods for polynomial root-finding such as interpolation and methods due to Graeffe, Laguerre, and Jenkins and Traub. It includes many other methods and topics as well and has a chapter devoted to certain modern virtually optimal methods. Additionally, there are pointers to robust and efficient programs. This book is invaluable to anyone doing research in polynomial roots, or teaching a graduate course on that topic. - First comprehensive treatment of Root-Finding in several decades with a description of high-grade software and where it can be downloaded - Offers a long chapter on matrix methods and includes Parallel methods and errors where appropriate - Proves invaluable for research or graduate course


Numerical Methods for Roots of Polynomials - Part I

Numerical Methods for Roots of Polynomials - Part I

Author: J.M. McNamee

Publisher: Elsevier

Published: 2007-08-17

Total Pages: 354

ISBN-13: 0080489478

DOWNLOAD EBOOK

Numerical Methods for Roots of Polynomials - Part I (along with volume 2 covers most of the traditional methods for polynomial root-finding such as Newton's, as well as numerous variations on them invented in the last few decades. Perhaps more importantly it covers recent developments such as Vincent's method, simultaneous iterations, and matrix methods. There is an extensive chapter on evaluation of polynomials, including parallel methods and errors. There are pointers to robust and efficient programs. In short, it could be entitled "A Handbook of Methods for Polynomial Root-finding. This book will be invaluable to anyone doing research in polynomial roots, or teaching a graduate course on that topic. - First comprehensive treatment of Root-Finding in several decades - Gives description of high-grade software and where it can be down-loaded - Very up-to-date in mid-2006; long chapter on matrix methods - Includes Parallel methods, errors where appropriate - Invaluable for research or graduate course


Numerically Solving Polynomial Systems with Bertini

Numerically Solving Polynomial Systems with Bertini

Author: Daniel J. Bates

Publisher: SIAM

Published: 2013-11-08

Total Pages: 372

ISBN-13: 1611972698

DOWNLOAD EBOOK

This book is a guide to concepts and practice in numerical algebraic geometry ? the solution of systems of polynomial equations by numerical methods. Through numerous examples, the authors show how to apply the well-received and widely used open-source Bertini software package to compute solutions, including a detailed manual on syntax and usage options. The authors also maintain a complementary web page where readers can find supplementary materials and Bertini input files. Numerically Solving Polynomial Systems with Bertini approaches numerical algebraic geometry from a user's point of view with numerous examples of how Bertini is applicable to polynomial systems. It treats the fundamental task of solving a given polynomial system and describes the latest advances in the field, including algorithms for intersecting and projecting algebraic sets, methods for treating singular sets, the nascent field of real numerical algebraic geometry, and applications to large polynomial systems arising from differential equations. Those who wish to solve polynomial systems can start gently by finding isolated solutions to small systems, advance rapidly to using algorithms for finding positive-dimensional solution sets (curves, surfaces, etc.), and learn how to use parallel computers on large problems. These techniques are of interest to engineers and scientists in fields where polynomial equations arise, including robotics, control theory, economics, physics, numerical PDEs, and computational chemistry.


Polynomial Root-finding and Polynomiography

Polynomial Root-finding and Polynomiography

Author: Bahman Kalantari

Publisher: World Scientific

Published: 2009

Total Pages: 492

ISBN-13: 9812700595

DOWNLOAD EBOOK

This book offers fascinating and modern perspectives into the theory and practice of the historical subject of polynomial root-finding, rejuvenating the field via polynomiography, a creative and novel computer visualization that renders spectacular images of a polynomial equation. Polynomiography will not only pave the way for new applications of polynomials in science and mathematics, but also in art and education. The book presents a thorough development of the basic family, arguably the most fundamental family of iteration functions, deriving many surprising and novel theoretical and practical applications such as: algorithms for approximation of roots of polynomials and analytic functions, polynomiography, bounds on zeros of polynomials, formulas for the approximation of Pi, and characterizations or visualizations associated with a homogeneous linear recurrence relation. These discoveries and a set of beautiful images that provide new visions, even of the well-known polynomials and recurrences, are the makeup of a very desirable book. This book is a must for mathematicians, scientists, advanced undergraduates and graduates, but is also for anyone with an appreciation for the connections between a fantastically creative art form and its ancient mathematical foundations.


Numerical Algorithms

Numerical Algorithms

Author: Justin Solomon

Publisher: CRC Press

Published: 2015-06-24

Total Pages: 400

ISBN-13: 1482251892

DOWNLOAD EBOOK

Numerical Algorithms: Methods for Computer Vision, Machine Learning, and Graphics presents a new approach to numerical analysis for modern computer scientists. Using examples from a broad base of computational tasks, including data processing, computational photography, and animation, the textbook introduces numerical modeling and algorithmic desig


Numerical Methods for Large Eigenvalue Problems

Numerical Methods for Large Eigenvalue Problems

Author: Yousef Saad

Publisher: SIAM

Published: 2011-01-01

Total Pages: 292

ISBN-13: 9781611970739

DOWNLOAD EBOOK

This revised edition discusses numerical methods for computing eigenvalues and eigenvectors of large sparse matrices. It provides an in-depth view of the numerical methods that are applicable for solving matrix eigenvalue problems that arise in various engineering and scientific applications. Each chapter was updated by shortening or deleting outdated topics, adding topics of more recent interest, and adapting the Notes and References section. Significant changes have been made to Chapters 6 through 8, which describe algorithms and their implementations and now include topics such as the implicit restart techniques, the Jacobi-Davidson method, and automatic multilevel substructuring.


Introduction to Numerical Analysis

Introduction to Numerical Analysis

Author: J. Stoer

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 674

ISBN-13: 1475722729

DOWNLOAD EBOOK

On the occasion of this new edition, the text was enlarged by several new sections. Two sections on B-splines and their computation were added to the chapter on spline functions: Due to their special properties, their flexibility, and the availability of well-tested programs for their computation, B-splines play an important role in many applications. Also, the authors followed suggestions by many readers to supplement the chapter on elimination methods with a section dealing with the solution of large sparse systems of linear equations. Even though such systems are usually solved by iterative methods, the realm of elimination methods has been widely extended due to powerful techniques for handling sparse matrices. We will explain some of these techniques in connection with the Cholesky algorithm for solving positive definite linear systems. The chapter on eigenvalue problems was enlarged by a section on the Lanczos algorithm; the sections on the LR and QR algorithm were rewritten and now contain a description of implicit shift techniques. In order to some extent take into account the progress in the area of ordinary differential equations, a new section on implicit differential equa tions and differential-algebraic systems was added, and the section on stiff differential equations was updated by describing further methods to solve such equations.


Numerical Methods in Software and Analysis

Numerical Methods in Software and Analysis

Author: John R. Rice

Publisher: Academic Press

Published: 1993

Total Pages: 744

ISBN-13:

DOWNLOAD EBOOK

Emphasizes the use of high-quality mathematical software for numerical computation. The book discusses numerous programs and software packages focusing on the IMSL library (including the PROTRAN system) and ACM algorithms. Examples and case studies are included.