Numerical Investigations of Flow Around a Wire-wrapped Rotating Cylinder

Numerical Investigations of Flow Around a Wire-wrapped Rotating Cylinder

Author: Assma Begum

Publisher:

Published: 2018

Total Pages: 57

ISBN-13: 9780438148291

DOWNLOAD EBOOK

Abstract: Numerical investigations of flow past rotating circular cylinders with and without wires wrapped on the surface of the cylinder were studied using Computational Fluid Dynamics (CFD). The flow characteristics such as flow separation, shedding of the primary and secondary vortices, and drag coefficients were investigated. The software STAR CCM+ from Siemens PLM was used in all investigations. Three-dimensional Unsteady Reynolds Average Navier Stokes (URANS) equations were utilized. The free stream mean velocity was constant at 10 m/sec, which corresponded to an approximate Reynolds number based on cylinder’s diameter of 32,000. The results are presented for cylinders with and without wires at varying rotation rates [alpha] of 0, 0.5, and 1. This is represented by [alpha], the ratio of the tangential velocity at the cylinder to that of the free stream velocity of the flow. As the rotation rate increased from 0 to 1, the drag coefficient for the smooth rotating cylinder reduced, while the drag coefficient for the wire-wrapped cylinder increased. The wire-wrapped cylinder produced significantly higher lift when compared with the corresponding value for the smooth cylinder. Increasing the rotation rate increases the lift and lift to drag ratio.


Flow Around Circular Cylinders

Flow Around Circular Cylinders

Author: M.M. Zdravkovich

Publisher: Oxford University Press

Published: 1997

Total Pages: 628

ISBN-13: 9780198565611

DOWNLOAD EBOOK

This text offers an authoritative compilation of experimental data, theoretical models, and computer simulations which will provide the reader with a comprehensive survey of research work on the phenomenon of flow around circular cylinders.


Experimental and Numerical Investigations of the Flow Development Over Circular Cylinders with Stepwise Discontinuities in Diameter

Experimental and Numerical Investigations of the Flow Development Over Circular Cylinders with Stepwise Discontinuities in Diameter

Author: Christopher R. Morton

Publisher:

Published: 2010

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

Flow past circular cylinders with stepwise discontinuities in diameter was investigated experimentally and numerically for the diameter ratio D/d = 2 and three Reynolds numbers, Re = 150, 300, and 1050. The investigation was focused on the vortex shedding phenomena occurring in the wake of the cylinders. In the first series of experimental and numerical studies, the flow development past a single step cylinder was investigated. The single step cylinder model is comprised of a small diameter cylinder (d) attached coaxially to a large diameter cylinder (D). The results show that three distinct spanwise vortex cells form in the step cylinder wake: a single vortex shedding cell in the wake of the small cylinder (the S-cell) and two vortex shedding cells in the wake of the large cylinder, one in the region downstream of the step (the N-cell) and the other away from the step (the L-cell). Due to the differences in vortex shedding frequencies between the three cells, complex vortex connections occur in two vortex-interaction regions located between the adjacent cells. The region at the boundary between the S-cell and the N-cell is relatively narrow and its spanwise extent does not fluctuate significantly. In this region, vortex dislocations manifested as half-loop connections between two S-cell vortices of opposite sign. In contrast, the region at the boundary between the N-cell and the L-cell exhibits a transient behavior, with large scale vortex dislocations causing cyclic variation in the extent of N-cell vortices. For Re = 300 and 1050, small scale streamwise vortices forming in the wake complicate the vortex dynamics within the adjacent S-cell and L-cell. There is no significant Reynolds number effect on the average spanwise extent of the vortex cells and the two transition regions between neighboring cells. Finally, formation of N-cell vortices is linked to downwash fluctuations near the step. The flow development past a dual step cylinder was studied experimentally for Re = 1050. The dual step cylinder model is comprised of a small diameter cylinder (d) and a large diameter cylinder (D) mounted at the mid-span of the small cylinder. The experiments were completed for a range of large cylinder aspect ratios 0.2 ≤ L/D ≤ 17. The flow development is highly dependent on the aspect ratio of the large cylinder, L/D. The results identify four distinct flow regimes: (i) for L/D = 17, three vortex shedding cells form in the wake of the large cylinder, one central cell and two cells of lower frequency extending over about 4.5D from the large cylinder ends, (ii) for 7


Masters Theses in the Pure and Applied Sciences

Masters Theses in the Pure and Applied Sciences

Author: Wade H. Shafer

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 421

ISBN-13: 1461534747

DOWNLOAD EBOOK

Masters Theses in the Pure and Applied Sciences was first conceived, published, and disseminated by the Center for Information and Numerical Data Analysis and Synthesis (CINDAS) * at Purdue University in 1957, starting its coverage of theses with the academic year 1955. Beginning with Volume 13, the printing and dissemination phases of the activity were transferred to University Microfilms/Xerox of Ann Arbor, Michigan, with the thought that such an arrangement would be more beneficial to the academic and general scientific and technical community. After five years of this joint undertaking we had concluded that it was in the interest of all con cerned if the printing and distribution of the volumes were handled by an interna tional publishing house to assure improved service and broader dissemination. Hence, starting with Volume 18, Masters Theses in the Pure and Applied Sciences has been disseminated on a worldwide basis by Plenum Publishing Cor poration of New York, and in the same year the coverage was broadened to include Canadian universities. All back issues can also be ordered from Plenum. We have reported in Volume 34 (thesis year 1989) a total of 13,377 theses titles from 26 Canadian and 184 United States universities. We are sure that this broader base for these titles reported will greatly enhance the value of this important annual reference work. While Volume 34 reports theses submitted in 1989, on occasion, certain univer sities do report theses submitted in previous years but not reported at the time.


Convection in Porous Media

Convection in Porous Media

Author: Donald A. Nield

Publisher: Springer Science & Business Media

Published: 2012-11-30

Total Pages: 778

ISBN-13: 1461455413

DOWNLOAD EBOOK

Convection in Porous Media, 4th Edition, provides a user-friendly introduction to the subject, covering a wide range of topics, such as fibrous insulation, geological strata, and catalytic reactors. The presentation is self-contained, requiring only routine mathematics and the basic elements of fluid mechanics and heat transfer. The book will be of use not only to researchers and practicing engineers as a review and reference, but also to graduate students and others entering the field. The new edition features approximately 1,750 new references and covers current research in nanofluids, cellular porous materials, strong heterogeneity, pulsating flow, and more.