This book focuses on heat and mass transfer, fluid flow, chemical reaction, and other related processes that occur in engineering equipment, the natural environment, and living organisms. Using simple algebra and elementary calculus, the author develops numerical methods for predicting these processes mainly based on physical considerations. Through this approach, readers will develop a deeper understanding of the underlying physical aspects of heat transfer and fluid flow as well as improve their ability to analyze and interpret computed results.
This book focuses on heat and mass transfer, fluid flow, chemical reaction, and other related processes that occur in engineering equipment, the natural environment, and living organisms. Using simple algebra and elementary calculus, the author develops numerical methods for predicting these processes mainly based on physical considerations. Through this approach, readers will develop a deeper understanding of the underlying physical aspects of heat transfer and fluid flow as well as improve their ability to analyze and interpret computed results.
This book focuses on heat and mass transfer, fluid flow, chemical reaction, and other related processes that occur in engineering equipment, the natural environment, and living organisms. Using simple algebra and elementary calculus, the author develops numerical methods for predicting these processes mainly based on physical considerations. Through this approach, readers will develop a deeper understanding of the underlying physical aspects of heat transfer and fluid flow as well as improve their ability to analyze and interpret computed results.
This book describes useful analytical methods by applying them to real-world problems rather than solving the usual over-simplified classroom problems. The book demonstrates the applicability of analytical methods even for complex problems and guides the reader to a more intuitive understanding of approaches and solutions. Although the solution of Partial Differential Equations by numerical methods is the standard practice in industries, analytical methods are still important for the critical assessment of results derived from advanced computer simulations and the improvement of the underlying numerical techniques. Literature devoted to analytical methods, however, often focuses on theoretical and mathematical aspects and is therefore useless to most engineers. Analytical Methods for Heat Transfer and Fluid Flow Problems addresses engineers and engineering students. The second edition has been updated, the chapters on non-linear problems and on axial heat conduction problems were extended. And worked out examples were included.
This book comprises selected papers from the International Conference on Numerical Heat Transfer and Fluid Flow (NHTFF 2018), and presents the latest developments in computational methods in heat and mass transfer. It also discusses numerical methods such as finite element, finite difference, and finite volume applied to fluid flow problems. Providing a good balance between computational methods and analytical results applied to a wide variety of problems in heat transfer, transport and fluid mechanics, the book is a valuable resource for students and researchers working in the field of heat transfer and fluid dynamics.
PC-Aided Numerical Heat Transfer and Convective Flow is intended as a graduate course textbook for Mechanical and Chemical Engineering students as well as a reference book for practitioners interested in analytical and numerical treatments in the subject. The book is written so that the reader can use the enclosed diskette, with the aid of a personal computer, to systematically learn both analytical and numerical approaches associated with fluid flow and heat transfer without resorting to complex mathematical treatments. This is the first book that not only describes solution methodologies but also provides complete programs ranging from SOLODE to SAINTS for integration of Navier-Stokes equation. The book covers boundary layer flows to fully elliptic flows, laminar flows to turbulent flows, and free convection to forced convection. The student will learn about convection in porous media, a new field of rapid growth in contemporary heat transfer research. A basic knowledge of fluid mechanics and heat transfer is assumed. It is also assumed that the student knows the basics of Fortran and has access to a personal computer.The material can be presented in a one-semester course or with selective coverage in a seminar.
Most of the equations governing the problems related to science and engineering are nonlinear in nature. As a result, they are inherently difficult to solve. Analytical solutions are available only for some special cases. For other cases, one has no easy means but to solve the problem must depend on numerical solutions. Fluid Flow, Heat and Mass Transfer at Bodies of Different Shapes: Numerical Solutions presents the current theoretical developments of boundary layer theory, a branch of transport phenomena. Also, the book addresses the theoretical developments in the area and presents a number of physical problems that have been solved by analytical or numerical method. It is focused particularly on fluid flow problems governed by nonlinear differential equations. The book is intended for researchers in applied mathematics, physics, mechanics and engineering. - Addresses basic concepts to understand the theoretical framework for the method - Provides examples of nonlinear problems that have been solved through the use of numerical method - Focuses on fluid flow problems governed by nonlinear equations
Heat Transfer and Fluid Flow in Biological Processes covers emerging areas in fluid flow and heat transfer relevant to biosystems and medical technology. This book uses an interdisciplinary approach to provide a comprehensive prospective on biofluid mechanics and heat transfer advances and includes reviews of the most recent methods in modeling of flows in biological media, such as CFD. Written by internationally recognized researchers in the field, each chapter provides a strong introductory section that is useful to both readers currently in the field and readers interested in learning more about these areas. Heat Transfer and Fluid Flow in Biological Processes is an indispensable reference for professors, graduate students, professionals, and clinical researchers in the fields of biology, biomedical engineering, chemistry and medicine working on applications of fluid flow, heat transfer, and transport phenomena in biomedical technology. - Provides a wide range of biological and clinical applications of fluid flow and heat transfer in biomedical technology - Covers topics such as electrokinetic transport, electroporation of cells and tissue dialysis, inert solute transport (insulin), thermal ablation of cancerous tissue, respiratory therapies, and associated medical technologies - Reviews the most recent advances in modeling techniques
Definitive Treatment of the Numerical Simulation of Bioheat Transfer and Fluid FlowMotivated by the upwelling of current interest in subjects critical to human health, Advances in Numerical Heat Transfer, Volume 3 presents the latest information on bioheat and biofluid flow. Like its predecessors, this volume assembles a team of renowned internatio