Numerical Analysis of Nonlinear Partial Differential-algebraic Equations

Numerical Analysis of Nonlinear Partial Differential-algebraic Equations

Author: Michael Matthes

Publisher: Logos Verlag Berlin GmbH

Published: 2012

Total Pages: 191

ISBN-13: 3832532781

DOWNLOAD EBOOK

Various mathematical models in many application areas give rise to systems of so called partial or abstract differential-algebraic equations (ADAEs). A substantial mathematical treatment of nonlinear ADAEs is still at an initial stage.In this thesis two approaches for treating nonlinear ADAEs are presented. The first one represents an extension of an approach by Tischendorf for the treatment of a specific class of linear ADAEs to the nonlinear case. It is based on the Galerkin approach and the theory of monotone operators for evolution equations. Unique solvability of the ADAE and strong convergence of the Galerkin solutions is proven. Furthermore it is shown that this class of ADAEs has Perturbation Index 1 and at most ADAE Index 1. In the second approach we formulate two prototypes of coupled systems where a semi-explicit differential-algebraic equation is coupled to an infinite dimensional algebraic operator equation or an evolution equation. For both prototypes unique solvability, strong convergence of Galerkin solutions and a Perturbation Index 1 result is shown. Both prototypes can be applied to concrete coupled systems in circuit simulation relying on a new global solvability result for the nonlinear equations of the Modified Nodal Analysis under suitable topological assumptions.


Numerical Methods for Nonlinear Partial Differential Equations

Numerical Methods for Nonlinear Partial Differential Equations

Author: Sören Bartels

Publisher: Springer

Published: 2015-01-19

Total Pages: 394

ISBN-13: 3319137972

DOWNLOAD EBOOK

The description of many interesting phenomena in science and engineering leads to infinite-dimensional minimization or evolution problems that define nonlinear partial differential equations. While the development and analysis of numerical methods for linear partial differential equations is nearly complete, only few results are available in the case of nonlinear equations. This monograph devises numerical methods for nonlinear model problems arising in the mathematical description of phase transitions, large bending problems, image processing, and inelastic material behavior. For each of these problems the underlying mathematical model is discussed, the essential analytical properties are explained, and the proposed numerical method is rigorously analyzed. The practicality of the algorithms is illustrated by means of short implementations.


Differential-algebraic Equations

Differential-algebraic Equations

Author: Peter Kunkel

Publisher: European Mathematical Society

Published: 2006

Total Pages: 396

ISBN-13: 9783037190173

DOWNLOAD EBOOK

Differential-algebraic equations are a widely accepted tool for the modeling and simulation of constrained dynamical systems in numerous applications, such as mechanical multibody systems, electrical circuit simulation, chemical engineering, control theory, fluid dynamics and many others. This is the first comprehensive textbook that provides a systematic and detailed analysis of initial and boundary value problems for differential-algebraic equations. The analysis is developed from the theory of linear constant coefficient systems via linear variable coefficient systems to general nonlinear systems. Further sections on control problems, generalized inverses of differential-algebraic operators, generalized solutions, and differential equations on manifolds complement the theoretical treatment of initial value problems. Two major classes of numerical methods for differential-algebraic equations (Runge-Kutta and BDF methods) are discussed and analyzed with respect to convergence and order. A chapter is devoted to index reduction methods that allow the numerical treatment of general differential-algebraic equations. The analysis and numerical solution of boundary value problems for differential-algebraic equations is presented, including multiple shooting and collocation methods. A survey of current software packages for differential-algebraic equations completes the text. The book is addressed to graduate students and researchers in mathematics, engineering and sciences, as well as practitioners in industry. A prerequisite is a standard course on the numerical solution of ordinary differential equations. Numerous examples and exercises make the book suitable as a course textbook or for self-study.


Numerical Solution of Initial-value Problems in Differential-algebraic Equations

Numerical Solution of Initial-value Problems in Differential-algebraic Equations

Author: K. E. Brenan

Publisher: SIAM

Published: 1996-01-01

Total Pages: 268

ISBN-13: 9781611971224

DOWNLOAD EBOOK

Many physical problems are most naturally described by systems of differential and algebraic equations. This book describes some of the places where differential-algebraic equations (DAE's) occur. The basic mathematical theory for these equations is developed and numerical methods are presented and analyzed. Examples drawn from a variety of applications are used to motivate and illustrate the concepts and techniques. This classic edition, originally published in 1989, is the only general DAE book available. It not only develops guidelines for choosing different numerical methods, it is the first book to discuss DAE codes, including the popular DASSL code. An extensive discussion of backward differentiation formulas details why they have emerged as the most popular and best understood class of linear multistep methods for general DAE's. New to this edition is a chapter that brings the discussion of DAE software up to date. The objective of this monograph is to advance and consolidate the existing research results for the numerical solution of DAE's. The authors present results on the analysis of numerical methods, and also show how these results are relevant for the solution of problems from applications. They develop guidelines for problem formulation and effective use of the available mathematical software and provide extensive references for further study.


Numerical Analysis Of Ordinary Differential Equations And Its Applications

Numerical Analysis Of Ordinary Differential Equations And Its Applications

Author: Taketomo Mitsui

Publisher: World Scientific

Published: 1995-10-12

Total Pages: 240

ISBN-13: 9814500569

DOWNLOAD EBOOK

The book collects original articles on numerical analysis of ordinary differential equations and its applications. Some of the topics covered in this volume are: discrete variable methods, Runge-Kutta methods, linear multistep methods, stability analysis, parallel implementation, self-validating numerical methods, analysis of nonlinear oscillation by numerical means, differential-algebraic and delay-differential equations, and stochastic initial value problems.


Solving Nonlinear Partial Differential Equations with Maple and Mathematica

Solving Nonlinear Partial Differential Equations with Maple and Mathematica

Author: Inna Shingareva

Publisher: Springer Science & Business Media

Published: 2011-07-24

Total Pages: 372

ISBN-13: 370910517X

DOWNLOAD EBOOK

The emphasis of the book is given in how to construct different types of solutions (exact, approximate analytical, numerical, graphical) of numerous nonlinear PDEs correctly, easily, and quickly. The reader can learn a wide variety of techniques and solve numerous nonlinear PDEs included and many other differential equations, simplifying and transforming the equations and solutions, arbitrary functions and parameters, presented in the book). Numerous comparisons and relationships between various types of solutions, different methods and approaches are provided, the results obtained in Maple and Mathematica, facilitates a deeper understanding of the subject. Among a big number of CAS, we choose the two systems, Maple and Mathematica, that are used worldwide by students, research mathematicians, scientists, and engineers. As in the our previous books, we propose the idea to use in parallel both systems, Maple and Mathematica, since in many research problems frequently it is required to compare independent results obtained by using different computer algebra systems, Maple and/or Mathematica, at all stages of the solution process. One of the main points (related to CAS) is based on the implementation of a whole solution method (e.g. starting from an analytical derivation of exact governing equations, constructing discretizations and analytical formulas of a numerical method, performing numerical procedure, obtaining various visualizations, and comparing the numerical solution obtained with other types of solutions considered in the book, e.g. with asymptotic solution).


Numerical Analysis of Ordinary Differential Equations and Its Applications

Numerical Analysis of Ordinary Differential Equations and Its Applications

Author: Taketomo Mitsui

Publisher: World Scientific

Published: 1995

Total Pages: 244

ISBN-13: 9789810222291

DOWNLOAD EBOOK

The book collects original articles on numerical analysis of ordinary differential equations and its applications. Some of the topics covered in this volume are: discrete variable methods, Runge-Kutta methods, linear multistep methods, stability analysis, parallel implementation, self-validating numerical methods, analysis of nonlinear oscillation by numerical means, differential-algebraic and delay-differential equations, and stochastic initial value problems.


Surveys in Differential-Algebraic Equations IV

Surveys in Differential-Algebraic Equations IV

Author: Achim Ilchmann

Publisher: Springer

Published: 2017-03-08

Total Pages: 312

ISBN-13: 3319466186

DOWNLOAD EBOOK

The present volume comprises survey articles on various fields of Differential-Algebraic Equations (DAEs) which have widespread applications in controlled dynamical systems, especially in mechanical and electrical engineering and a strong relation to (ordinary) differential equations. The individual chapters provide reviews, presentations of the current state of research and new concepts in - History of DAEs - DAE aspects of mechanical multibody systems - Model reduction of DAEs - Observability for DAEs - Numerical Analysis for DAEs The results are presented in an accessible style, making this book suitable not only for active researchers but also for graduate students (with a good knowledge of the basic principles of DAEs) for self-study.