Number Theory in Mathematics Education

Number Theory in Mathematics Education

Author: Rina Zazkis

Publisher: Routledge

Published: 2012-10-12

Total Pages: 305

ISBN-13: 1136501363

DOWNLOAD EBOOK

This book offers multiple interconnected perspectives on the largely untapped potential of elementary number theory for mathematics education: its formal and cognitive nature, its relation to arithmetic and algebra, its accessibility, its utility and intrinsic merits, to name just a few. Its purpose is to promote explication and critical dialogue about these issues within the international mathematics education community. The studies comprise a variety of pedagogical and research orientations by an international group of researchers that, collectively, make a compelling case for the relevance and importance of number theory in mathematics education in both pre K-16 settings and mathematics teacher education. Topics variously engaged include: *understanding particular concepts related to numerical structure and number theory; *elaborating on the historical and psychological relevance of number theory in concept development; *attaining a smooth transition and extension from pattern recognition to formative principles; *appreciating the aesthetics of number structure; *exploring its suitability in terms of making connections leading to aha! insights and reaching toward the learner's affective domain; *reexamining previously constructed knowledge from a novel angle; *investigating connections between technique and theory; *utilizing computers and calculators as pedagogical tools; and *generally illuminating the role number theory concepts could play in developing mathematical knowledge and reasoning in students and teachers. Overall, the chapters of this book highlight number theory-related topics as a stepping-stone from arithmetic toward generalization and algebraic formalism, and as a means for providing intuitively grounded meanings of numbers, variables, functions, and proofs. Number Theory in Mathematics Education: Perspectives and Prospects is of interest to researchers, teacher educators, and students in the field of mathematics education, and is well suited as a text for upper-level mathematics education courses.


Fundamentals of Number Theory

Fundamentals of Number Theory

Author: William J. LeVeque

Publisher: Courier Corporation

Published: 2014-01-05

Total Pages: 292

ISBN-13: 0486141500

DOWNLOAD EBOOK

This excellent textbook introduces the basics of number theory, incorporating the language of abstract algebra. A knowledge of such algebraic concepts as group, ring, field, and domain is not assumed, however; all terms are defined and examples are given — making the book self-contained in this respect. The author begins with an introductory chapter on number theory and its early history. Subsequent chapters deal with unique factorization and the GCD, quadratic residues, number-theoretic functions and the distribution of primes, sums of squares, quadratic equations and quadratic fields, diophantine approximation, and more. Included are discussions of topics not always found in introductory texts: factorization and primality of large integers, p-adic numbers, algebraic number fields, Brun's theorem on twin primes, and the transcendence of e, to mention a few. Readers will find a substantial number of well-chosen problems, along with many notes and bibliographical references selected for readability and relevance. Five helpful appendixes — containing such study aids as a factor table, computer-plotted graphs, a table of indices, the Greek alphabet, and a list of symbols — and a bibliography round out this well-written text, which is directed toward undergraduate majors and beginning graduate students in mathematics. No post-calculus prerequisite is assumed. 1977 edition.


Number, Shape, & Symmetry

Number, Shape, & Symmetry

Author: Diane L. Herrmann

Publisher: CRC Press

Published: 2012-10-18

Total Pages: 446

ISBN-13: 1466554649

DOWNLOAD EBOOK

Through a careful treatment of number theory and geometry, Number, Shape, & Symmetry: An Introduction to Number Theory, Geometry, and Group Theory helps readers understand serious mathematical ideas and proofs. Classroom-tested, the book draws on the authors’ successful work with undergraduate students at the University of Chicago, seventh to tenth grade mathematically talented students in the University of Chicago’s Young Scholars Program, and elementary public school teachers in the Seminars for Endorsement in Science and Mathematics Education (SESAME). The first half of the book focuses on number theory, beginning with the rules of arithmetic (axioms for the integers). The authors then present all the basic ideas and applications of divisibility, primes, and modular arithmetic. They also introduce the abstract notion of a group and include numerous examples. The final topics on number theory consist of rational numbers, real numbers, and ideas about infinity. Moving on to geometry, the text covers polygons and polyhedra, including the construction of regular polygons and regular polyhedra. It studies tessellation by looking at patterns in the plane, especially those made by regular polygons or sets of regular polygons. The text also determines the symmetry groups of these figures and patterns, demonstrating how groups arise in both geometry and number theory. The book is suitable for pre-service or in-service training for elementary school teachers, general education mathematics or math for liberal arts undergraduate-level courses, and enrichment activities for high school students or math clubs.


Critical Race Theory in Mathematics Education

Critical Race Theory in Mathematics Education

Author: Julius Davis

Publisher: Routledge

Published: 2019-04-30

Total Pages: 309

ISBN-13: 1351356151

DOWNLOAD EBOOK

Critical Race Theory in Mathematics Education brings together scholarship that uses critical race theory (CRT) to provide a comprehensive understanding of race, racism, social justice, and experiential knowledge of African Americans’ mathematics education. CRT has gained traction within the educational research sphere, and this book extends and applies this framework to chronicle the paths of mathematics educators who advance and use CRT. This edited collection brings together scholarship that addresses the racial challenges thrusted upon Black learners and the gatekeeping nature of the discipline of mathematics. Across the ten chapters, scholars expand the uses of CRT in mathematics education and share insights with stakeholders regarding the racialized experiences of mathematics students and educators. Collectively, the volume explains how researchers, practitioners, and policymakers can use CRT to examine issues of race, racism, and other forms of oppression in mathematics education for Black children and adults.


Number Theory

Number Theory

Author: George E. Andrews

Publisher: Courier Corporation

Published: 2012-04-30

Total Pages: 292

ISBN-13: 0486135101

DOWNLOAD EBOOK

Undergraduate text uses combinatorial approach to accommodate both math majors and liberal arts students. Covers the basics of number theory, offers an outstanding introduction to partitions, plus chapters on multiplicativity-divisibility, quadratic congruences, additivity, and more.


Number Theory and Geometry: An Introduction to Arithmetic Geometry

Number Theory and Geometry: An Introduction to Arithmetic Geometry

Author: Álvaro Lozano-Robledo

Publisher: American Mathematical Soc.

Published: 2019-03-21

Total Pages: 506

ISBN-13: 147045016X

DOWNLOAD EBOOK

Geometry and the theory of numbers are as old as some of the oldest historical records of humanity. Ever since antiquity, mathematicians have discovered many beautiful interactions between the two subjects and recorded them in such classical texts as Euclid's Elements and Diophantus's Arithmetica. Nowadays, the field of mathematics that studies the interactions between number theory and algebraic geometry is known as arithmetic geometry. This book is an introduction to number theory and arithmetic geometry, and the goal of the text is to use geometry as the motivation to prove the main theorems in the book. For example, the fundamental theorem of arithmetic is a consequence of the tools we develop in order to find all the integral points on a line in the plane. Similarly, Gauss's law of quadratic reciprocity and the theory of continued fractions naturally arise when we attempt to determine the integral points on a curve in the plane given by a quadratic polynomial equation. After an introduction to the theory of diophantine equations, the rest of the book is structured in three acts that correspond to the study of the integral and rational solutions of linear, quadratic, and cubic curves, respectively. This book describes many applications including modern applications in cryptography; it also presents some recent results in arithmetic geometry. With many exercises, this book can be used as a text for a first course in number theory or for a subsequent course on arithmetic (or diophantine) geometry at the junior-senior level.


Topics in Number Theory

Topics in Number Theory

Author: Basil Gordon

Publisher: Springer Science & Business Media

Published: 1999-03-31

Total Pages: 280

ISBN-13: 9780792355830

DOWNLOAD EBOOK

This volume contains the proceedings of the Topics in Number Theory Conference held at the Pennsylvania State University from July 31 through August 3, 1997. It contains seventeen research papers covering many areas of number theory; among them are contributions from four of the eight plenary speakers


Discrete Mathematics

Discrete Mathematics

Author: Oscar Levin

Publisher: Createspace Independent Publishing Platform

Published: 2016-08-16

Total Pages: 342

ISBN-13: 9781534970748

DOWNLOAD EBOOK

This gentle introduction to discrete mathematics is written for first and second year math majors, especially those who intend to teach. The text began as a set of lecture notes for the discrete mathematics course at the University of Northern Colorado. This course serves both as an introduction to topics in discrete math and as the "introduction to proof" course for math majors. The course is usually taught with a large amount of student inquiry, and this text is written to help facilitate this. Four main topics are covered: counting, sequences, logic, and graph theory. Along the way proofs are introduced, including proofs by contradiction, proofs by induction, and combinatorial proofs. The book contains over 360 exercises, including 230 with solutions and 130 more involved problems suitable for homework. There are also Investigate! activities throughout the text to support active, inquiry based learning. While there are many fine discrete math textbooks available, this text has the following advantages: It is written to be used in an inquiry rich course. It is written to be used in a course for future math teachers. It is open source, with low cost print editions and free electronic editions.


The Geometry of Numbers

The Geometry of Numbers

Author: C. D. Olds

Publisher: Cambridge University Press

Published: 2001-02-22

Total Pages: 198

ISBN-13: 9780883856437

DOWNLOAD EBOOK

A self-contained introduction to the geometry of numbers.


Algebra and Number Theory

Algebra and Number Theory

Author: Martyn R. Dixon

Publisher: John Wiley & Sons

Published: 2011-07-15

Total Pages: 544

ISBN-13: 9780470640531

DOWNLOAD EBOOK

Explore the main algebraic structures and number systems that play a central role across the field of mathematics Algebra and number theory are two powerful branches of modern mathematics at the forefront of current mathematical research, and each plays an increasingly significant role in different branches of mathematics, from geometry and topology to computing and communications. Based on the authors' extensive experience within the field, Algebra and Number Theory has an innovative approach that integrates three disciplines—linear algebra, abstract algebra, and number theory—into one comprehensive and fluid presentation, facilitating a deeper understanding of the topic and improving readers' retention of the main concepts. The book begins with an introduction to the elements of set theory. Next, the authors discuss matrices, determinants, and elements of field theory, including preliminary information related to integers and complex numbers. Subsequent chapters explore key ideas relating to linear algebra such as vector spaces, linear mapping, and bilinear forms. The book explores the development of the main ideas of algebraic structures and concludes with applications of algebraic ideas to number theory. Interesting applications are provided throughout to demonstrate the relevance of the discussed concepts. In addition, chapter exercises allow readers to test their comprehension of the presented material. Algebra and Number Theory is an excellent book for courses on linear algebra, abstract algebra, and number theory at the upper-undergraduate level. It is also a valuable reference for researchers working in different fields of mathematics, computer science, and engineering as well as for individuals preparing for a career in mathematics education.