Electromagnetic Interactions of Hadrons
Author: Sandy Donnachie
Publisher: Springer
Published: 1978
Total Pages: 480
ISBN-13:
DOWNLOAD EBOOKRead and Download eBook Full
Author: Sandy Donnachie
Publisher: Springer
Published: 1978
Total Pages: 480
ISBN-13:
DOWNLOAD EBOOKAuthor: National Research Council
Publisher: National Academies Press
Published: 1999-03-31
Total Pages: 222
ISBN-13: 0309173663
DOWNLOAD EBOOKDramatic progress has been made in all branches of physics since the National Research Council's 1986 decadal survey of the field. The Physics in a New Era series explores these advances and looks ahead to future goals. The series includes assessments of the major subfields and reports on several smaller subfields, and preparation has begun on an overview volume on the unity of physics, its relationships to other fields, and its contributions to national needs. Nuclear Physics is the latest volume of the series. The book describes current activity in understanding nuclear structure and symmetries, the behavior of matter at extreme densities, the role of nuclear physics in astrophysics and cosmology, and the instrumentation and facilities used by the field. It makes recommendations on the resources needed for experimental and theoretical advances in the coming decade.
Author: Chris Quigg
Publisher: Princeton University Press
Published: 2013-09-22
Total Pages: 497
ISBN-13: 1400848229
DOWNLOAD EBOOKA thoroughly revised edition of a landmark textbook on gauge theories and their applications to particle physics This completely revised and updated graduate-level textbook is an ideal introduction to gauge theories and their applications to high-energy particle physics, and takes an in-depth look at two new laws of nature—quantum chromodynamics and the electroweak theory. From quantum electrodynamics through unified theories of the interactions among leptons and quarks, Chris Quigg examines the logic and structure behind gauge theories and the experimental underpinnings of today's theories. Quigg emphasizes how we know what we know, and in the era of the Large Hadron Collider, his insightful survey of the standard model and the next great questions for particle physics makes for compelling reading. The brand-new edition shows how the electroweak theory developed in conversation with experiment. Featuring a wide-ranging treatment of electroweak symmetry breaking, the physics of the Higgs boson, and the importance of the 1-TeV scale, the book moves beyond established knowledge and investigates the path toward unified theories of strong, weak, and electromagnetic interactions. Explicit calculations and diverse exercises allow readers to derive the consequences of these theories. Extensive annotated bibliographies accompany each chapter, amplify points of conceptual or technical interest, introduce further applications, and lead readers to the research literature. Students and seasoned practitioners will profit from the text's current insights, and specialists wishing to understand gauge theories will find the book an ideal reference for self-study. Brand-new edition of a landmark text introducing gauge theories Consistent attention to how we know what we know Explicit calculations develop concepts and engage with experiment Interesting and diverse problems sharpen skills and ideas Extensive annotated bibliographies
Author: Sylvie Braibant
Publisher: Springer Science & Business Media
Published: 2011-11-16
Total Pages: 503
ISBN-13: 9400724632
DOWNLOAD EBOOKThe book provides theoretical and phenomenological insights on the structure of matter, presenting concepts and features of elementary particle physics and fundamental aspects of nuclear physics. Starting with the basics (nomenclature, classification, acceleration techniques, detection of elementary particles), the properties of fundamental interactions (electromagnetic, weak and strong) are introduced with a mathematical formalism suited to undergraduate students. Some experimental results (the discovery of neutral currents and of the W± and Z0 bosons; the quark structure observed using deep inelastic scattering experiments) show the necessity of an evolution of the formalism. This motivates a more detailed description of the weak and strong interactions, of the Standard Model of the microcosm with its experimental tests, and of the Higgs mechanism. The open problems in the Standard Model of the microcosm and macrocosm are presented at the end of the book. For example, the CP violation currently measured does not explain the matter-antimatter asymmetry of the observable universe; the neutrino oscillations and the estimated amount of cosmological dark matter seem to require new physics beyond the Standard Model. A list of other introductory texts, work reviews and some specialized publications is reported in the bibliography. Translation from the Italian Language Edition "Particelle e interazioni fondamentali" by Sylvie Braibant, Giorgio Giacomelli, and Maurizio Spurio Copyright © Springer-Verlag Italia, 2009 Springer-Verlag Italia is part of Springer Science+Business Media All Rights Reserved
Author: Kris L. G. Heyde
Publisher: CRC Press
Published: 1994-09-22
Total Pages: 448
ISBN-13: 9780750303002
DOWNLOAD EBOOKThis book proposal was originally forwarded from Andrew Durnell in 1991. It is different to the competition in style, progressing logically from general nuclear properties to nuclear structure, and in content, choosing to treat the major topics in sufficient depth for the student to obtain further understanding. The logical approach, linking general nuclear properties and nuclear structure is a benefit. The careful selection of topics, well-chosen illustrations, box features containing recent research examples and results, and tested problems, together provide a complete introduction to the major concepts and ideas required to understand nuclear physics. The author is careful throughout to keep nuclear physics in context with other disciplines, and to present the subject area as dynamic and interesting, through the use of box features. Series Editor Comment "advanced text suitable for final year courses and for introductory postgraduate studies" (Hamilton) "the range and depth of cover appear ideal and Heyde's approach is excellent ... a good teacher and text follows very much his style ... he also looks forward to the frontiers ... important in a (post) graduate text ... a student can see where his own particular topic may fit in ... many texts are far removed from research ... wealth and choice of figures ... good diagrams can do a lot for a text ... level of mathematics will ensure that it can be widely used"
Author: Claude Leroy
Publisher: World Scientific
Published: 2009
Total Pages: 951
ISBN-13: 9812818286
DOWNLOAD EBOOKThis book, like its first edition, addresses the fundamental principles of interaction between radiation and matter and the principle of particle detectors in a wide scope of fields, from low to high energy, including space physics and the medical environment. It provides abundant information about the processes of electromagnetic and hadronic energy deposition in matter, detecting systems, and performance and optimization of detectors. In this second edition, new sections dedicated to the following topics are included: space and high-energy physics radiation environment, non-ionizing energy loss (NIEL), displacement damage in silicon devices and detectors, single event effects, detection of slow and fast neutrons with silicon detectors, solar cells, pixel detectors, and additional material for dark matter detectors. This book will benefit graduate students and final-year undergraduates as a reference and supplement for courses in particle, astroparticle, and space physics and instrumentation. A part of it is directed toward courses in medical physics. The book can also be used by researchers in experimental particle physics at low, medium, and high energy who are dealing with instrumentation.
Author: Sidney Yip
Publisher: World Scientific Publishing Company
Published: 2014-10-24
Total Pages: 374
ISBN-13: 9814644579
DOWNLOAD EBOOKThis book is a treatment on the foundational knowledge of Nuclear Science and Engineering. It is an outgrowth of a first-year graduate-level course which the author has taught over the years in the Department of Nuclear Science and Engineering at MIT. The emphasis of the book is on concepts in nuclear science and engineering in contrast to the traditional nuclear physics in a nuclear engineering curriculum. The essential difference lies in the importance we give to the understanding of nuclear radiation and their interactions with matter. We see our students as nuclear engineers who work with all kinds of nuclear devices, from fission and fusion reactors to accelerators and detection systems. In all these complex systems nuclear radiation play a central role. In generating nuclear radiation and using them for beneficial purposes, scientists and engineers must understand the properties of the radiation and how they interact with their surroundings. It is through the control of radiation interactions that we can develop new devices or optimize existing ones to make them more safe, powerful, durable, or economical. This is why radiation interaction is the essence of this book.
Author: H. Arenhövel
Publisher: Springer
Published: 1979-09-01
Total Pages: 296
ISBN-13: 9783540095392
DOWNLOAD EBOOKAuthor: Nikola?i Nikolaevich Bogol?iubov
Publisher: World Scientific
Published: 1990
Total Pages: 344
ISBN-13: 9789810200435
DOWNLOAD EBOOKThis book covers a wide range of topics on the interaction of alternating magnetic field with condensed matter, including superradiant process, proton echo, gamma resonance, scattering of light by condensed matter near critical points, electromagnetically induced phase transitions and some mathematical problems describing the phenomena mentioned.
Author: Carlos A. Bertulani
Publisher: Princeton University Press
Published: 2007-04-03
Total Pages: 488
ISBN-13: 1400839327
DOWNLOAD EBOOKNuclear Physics in a Nutshell provides a clear, concise, and up-to-date overview of the atomic nucleus and the theories that seek to explain it. Bringing together a systematic explanation of hadrons, nuclei, and stars for the first time in one volume, Carlos A. Bertulani provides the core material needed by graduate and advanced undergraduate students of physics to acquire a solid understanding of nuclear and particle science. Nuclear Physics in a Nutshell is the definitive new resource for anyone considering a career in this dynamic field. The book opens by setting nuclear physics in the context of elementary particle physics and then shows how simple models can provide an understanding of the properties of nuclei, both in their ground states and excited states, and also of the nature of nuclear reactions. It then describes: nuclear constituents and their characteristics; nuclear interactions; nuclear structure, including the liquid-drop model approach, and the nuclear shell model; and recent developments such as the nuclear mean-field and the nuclear physics of very light nuclei, nuclear reactions with unstable nuclear beams, and the role of nuclear physics in energy production and nucleosynthesis in stars. Throughout, discussions of theory are reinforced with examples that provide applications, thus aiding students in their reading and analysis of current literature. Each chapter closes with problems, and appendixes address supporting technical topics.