Nuclear Fragmentation Cross Section Modeling for Space Radiation Applications

Nuclear Fragmentation Cross Section Modeling for Space Radiation Applications

Author: Wouter C. de Wet

Publisher:

Published: 2017

Total Pages: 87

ISBN-13:

DOWNLOAD EBOOK

One of the most significant challenges to overcome on the journey to Mars is understanding the biological risk associated with the space radiation environment. Radiation transport codes are one of the tools necessary to quantify this risk. Due to the nature of the space radiation environment, it is of great importance that these transport codes are able to describe the breakup of heavy ions into smaller fragments--light ions in particular. For this, event generators within radiation transport codes rely on nuclear fragmentation codes to predict the products of high energy nuclear collisions. This manuscript documents the development of a nuclear fragmentation code: the Relativistic Abrasion-Ablation and Deexcitation Fragmentation Model (RAADFRG). RAADFRG is the product of a collaboration between the University of Tennessee and NASA's Langley Research Center (LaRC), and is being developed for space radiation applications. Currently, total isotopic yield is of primary concern; however, future versions of the model must predict double differential isotopic yields. The collision model is a framework of smaller physics packages, each meant to describe a specific physical phenomenon within the abrasion-ablation heavy ion collision theory. The coalescence model, along with the collision framework architecture and development, are my primary original contributions.


Resonance Production and Nuclear Fragmentation for Space Radiation

Resonance Production and Nuclear Fragmentation for Space Radiation

Author:

Publisher:

Published: 2008

Total Pages: 282

ISBN-13:

DOWNLOAD EBOOK

Abstract: Space radiation and its effects on human life and sensitive equipment are of concern to a safe exploration of space. Radiation fields are modified in quality and quantity by intervening shielding materials. The modification of space radiation by shielding materials is modeled by deterministic transport codes using the Boltzmann transport equation. Databases of cross sections for particle production are needed as input for transport codes. A simple model of nucleon-nucleon interactions is developed and used to derive differential and total cross sections. The validity of the model is verified for proton-proton elastic scattering and applied to delta-resonance production. Additionally, a comprehensive validation program of the nucleus-nucleus fragmentation cross section models NUCFRG2 and QMSFRG is performed. A database of over 300 experiments was assembled and used to compare to model fragmentation cross sections.


Physics of the Isotopic Dependence of Galactic Cosmic Ray Fluence Behind Shielding

Physics of the Isotopic Dependence of Galactic Cosmic Ray Fluence Behind Shielding

Author: National Aeronautics and Space Administration (NASA)

Publisher: Createspace Independent Publishing Platform

Published: 2018-06-04

Total Pages: 52

ISBN-13: 9781720661672

DOWNLOAD EBOOK

For over 25 years, NASA has supported the development of space radiation transport models for shielding applications. The NASA space radiation transport model now predicts dose and dose equivalent in Earth and Mars orbit to an accuracy of plus or minus 20%. However, because larger errors may occur in particle fluence predictions, there is interest in further assessments and improvements in NASA's space radiation transport model. In this paper, we consider the effects of the isotopic composition of the primary galactic cosmic rays (GCR) and the isotopic dependence of nuclear fragmentation cross-sections on the solution to transport models used for shielding studies. Satellite measurements are used to describe the isotopic composition of the GCR. Using NASA's quantum multiple-scattering theory of nuclear fragmentation (QMSFRG) and high-charge and energy (HZETRN) transport code, we study the effect of the isotopic dependence of the primary GCR composition and secondary nuclei on shielding calculations. The QMSFRG is shown to accurately describe the iso-spin dependence of nuclear fragmentation. The principal finding of this study is that large errors (plus or minus 100%) will occur in the mass-fluence spectra when comparing transport models that use a complete isotope grid (approximately 170 ions) to ones that use a reduced isotope grid, for example the 59 ion-grid used in the HZETRN code in the past, however less significant errors (less than 20%) occur in the elemental-fluence spectra. Because a complete isotope grid is readily handled on small computer workstations and is needed for several applications studying GCR propagation and scattering, it is recommended that they be used for future GCR studies.Cucinotta, Francis A. and Saganti, Premkumar B. and Hu, Xiao-Dong and Kim, Myung-Hee Y. and Cleghorn, Timothy F. and Wilson, John W. and Tripathi, Ram K. and Zeitlin, Cary J.Johnson Space Center; Langley Research CenterFLUENCE; GALACTIC COSMIC RAYS; PRIMARY COSMIC RAYS;


Description of Alpha-nucleus Interaction Cross Sections for Cosmic Ray Shielding Studies

Description of Alpha-nucleus Interaction Cross Sections for Cosmic Ray Shielding Studies

Author: Francis A. Cucinotta

Publisher:

Published: 1993

Total Pages: 48

ISBN-13:

DOWNLOAD EBOOK

Nuclear interactions of high-energy alpha particles with target nuclei important for cosmic ray studies are discussed. Models for elastic, quasi-elastic, and breakup reactions are presented and compared with experimental data. Energy-dependent interaction cross sections and secondary spectra are presented based on theoretical models and the limite experimental data base.


Proton-Nucleus Total Cross Sections in Coupled-Channel Approach

Proton-Nucleus Total Cross Sections in Coupled-Channel Approach

Author: R. K. Tripathi

Publisher:

Published: 2000

Total Pages: 18

ISBN-13:

DOWNLOAD EBOOK

Recently, nucleon-nucleon (N-N) cross sections in the medium have been extracted directly from experiment. The in-medium N-N cross sections form the basic ingredients of several heavy-ion scattering approaches including the coupled-channel approach developed at the Langley Research Center. In the present study the ratio of the real to the imaginary part of the two-body scattering amplitude in the medium was investigated. These ratios are used in combination with the in-medium N-N cross sections to calculate total proton-nucleus cross sections. The agreement is excellent with the available experimental data. These cross sections are needed for the radiation risk assessment of space missions.


Cross Section Sensitivity and Propagated Errors in Hze Exposures

Cross Section Sensitivity and Propagated Errors in Hze Exposures

Author: National Aeronautics and Space Administration (NASA)

Publisher: Createspace Independent Publishing Platform

Published: 2018-06-24

Total Pages: 36

ISBN-13: 9781721812493

DOWNLOAD EBOOK

It has long been recognized that galactic cosmic rays are of such high energy that they tend to pass through available shielding materials resulting in exposure of astronauts and equipment within space vehicles and habitats. Any protection provided by shielding materials result not so much from stopping such particles but by changing their physical character in interaction with shielding material nuclei forming, hopefully, less dangerous species. Clearly, the fidelity of the nuclear cross-sections is essential to correct specification of shield design and sensitivity to cross-section error is important in guiding experimental validation of cross-section models and database. We examine the Boltzmann transport equation which is used to calculate dose equivalent during solar minimum, with units (cSv/yr), associated with various depths of shielding materials. The dose equivalent is a weighted sum of contributions from neutrons, protons, light ions, medium ions and heavy ions. We investigate the sensitivity of dose equivalent calculations due to errors in nuclear fragmentation cross-sections. We do this error analysis for all possible projectile-fragment combinations (14,365 such combinations) to estimate the sensitivity of the shielding calculations to errors in the nuclear fragmentation cross-sections. Numerical differentiation with respect to the cross-sections will be evaluated in a broad class of materials including polyethylene, aluminum and copper. We will identify the most important cross-sections for further experimental study and evaluate their impact on propagated errors in shielding estimates. Heinbockel, John H. and Wilson, John W. and Blatnig, Steve R. and Qualls, Garry D. and Badavi, Francis F. and Cucinotta, Francis A. Johnson Space Center; Langley Research Center NASA/TP-2005-213945, L-19085


Nuclear Fragmentation Cross Sections for NASA Database Development

Nuclear Fragmentation Cross Sections for NASA Database Development

Author:

Publisher:

Published: 2001

Total Pages: 5

ISBN-13:

DOWNLOAD EBOOK

Heavy ions with energies of hundreds to thousands of MeV/nucleon are present in the Galactic Cosmic Rays and will be a source of risk to astronaut health when long-duration crewed missions are undertaken. Nuclear interactions of these GCR ions in shielding materials must be accurately modeled by transport codes in order to estimate the dose and dose equivalent at points inside a spacecraft. Uncertainties in the nuclear fragmentation cross sections are propagated into these estimates, and the overall uncertainties increase as shielding depth increases. A program of fragmentation cross section measurements has therefore been undertaken to reduce these uncertainties, using GCR-like ion species and energies in particle accelerators in the United States, at the Brookhaven National Laboratory's Alternating Gradient Synchrotron (AGS) and in Japan at the National Institute of Radiological Science's Heavy Ion Medical Accelerator in Chiba (HIMAC). An extensive set of data has been obtained with beams ranging from helium to iron and including most of the species that are prominent in the GCR.


Tables of Nuclear Cross Sections for Galactic Cosmic Rays

Tables of Nuclear Cross Sections for Galactic Cosmic Rays

Author: Lawrence W. Townsend

Publisher:

Published: 1985

Total Pages: 40

ISBN-13:

DOWNLOAD EBOOK

A simple but comprehensive theory of nuclear reactions is presented. Extensive tables of nucleon, deuteron, and heavy-ion absorption cross sections over a broad range of energies are generated for use in cosmic ray shielding studies. Numerous comparisons of the calculated values with available experimental data show agreement to within 3 percent for energies above 80 MeV/nucleon and within approximately 10 percent for energies as low as 30 MeV/nucleon. These tables represent the culmination of the development of the absorption cross section formalism and supersede the preliminary absorption cross sections published previously in NASA TN D-8107, NASA TP-2138, and NASA TM-84636.


Pion and Kaon Lab Frame Differential Cross Sections for Intermediate Energy Nucleus-Nucleus Collisions

Pion and Kaon Lab Frame Differential Cross Sections for Intermediate Energy Nucleus-Nucleus Collisions

Author: National Aeronautics and Space Adm Nasa

Publisher: Independently Published

Published: 2019-01-13

Total Pages: 30

ISBN-13: 9781793910394

DOWNLOAD EBOOK

Space radiation transport codes require accurate models for hadron production in intermediate energy nucleus-nucleus collisions. Codes require cross sections to be written in terms of lab frame variables and it is important to be able to verify models against experimental data in the lab frame. Several models are compared to lab frame data. It is found that models based on algebraic parameterizations are unable to describe intermediate energy differential cross section data. However, simple thermal model parameterizations, when appropriately transformed from the center of momentum to the lab frame, are able to account for the data. Norbury, John W. and Blattnig, Steve R. Langley Research Center WBS 651549.02.07.01