Authored by an integrated committee of plant and animal scientists, this review of newer molecular genetic techniques and traditional research methods is presented as a compilation of high-reward opportunities for agricultural research. Directed to the Agricultural Research Service and the agricultural research community at large, the volume discusses biosciences research in genetic engineering, animal science, plant science, and plant diseases and insect pests. An optimal climate for productive research is discussed.
Vectors of Plant Pathogens is a collection of papers that discusses the interrelationship of plant pathogens with their vectors. This collection deals with the numerous vector groups associated with plant pathogens. One paper describes the biology, feeding behavior and distribution of aphids, leafhoppers, plant hoppers, mealy bugs, whiteflies, psyllids, membracids. Another paper addresses the virus transmission characteristics of the mealy bugs during preliminary fasting or feeding, acquisition access time, post-acquisition fasting or feeding, and the inoculation access time. Other papers also discuss the involvement of insects in transmitting bacterial and fungal pathogens; the authors list unresolved issues such as the role of insects in overwintering of bacterial pathogens or the association of the fungus with a particular vector. One author describes some suspected fungi transmission such as the pea stem necrosis virus, red clover necrotic mosaic virus, and the tomato bushy stunt virus. Another paper examines the fate of plant viruses in mite vectors and convectors particularly the viruses found in wheat, barley, or brome grass. Agriculturists, botanists, and researchers in the field of botany, conservation, and plant genealogy will find this book useful.
Biological Techniques is a series of volumes aimed at introducing to a wide audience the latest advances in methodology. The pitfalls and problems of new techniques are given due consideration, as are those small but vital details not always explicit in the methods sections of journal papers.In recent years, most biological laboratories have been invaded by computers and a wealth of new DNA technology and this will be reflected in many of the titles appearing in the series.The books will be of value to advances researches and graduate students seeking to learn and apply new techniques, and will be useful to teachers of advanced undergraduate courses involving practical or project work.This manual describes the broad array of techniques that are used in insect pathology. It will provide biologists, insect pathologists, entomologists, and those interested in biological control, with the necessary information to work on a variety of pathogen groups.This book will be an essential laboratory reference for insect pathologists.Features include:* Step by-step instructions on how to isolate, identify, culture, bioassay and store the major groups of entomopathogens* Details of the practical knowledge needed by beginners to apply the techniques* Chapters written by an international group of experts* Discussion of safety testing of entomopathogens in mammals and also broader methods such as microscopy and molecular techniques* Provides extensive supplemental literature and recipes for media, fixatives and stains
Blood-sucking insects are the vectors of many of the most debilitating parasites of man and his domesticated animals. In addition they are of considerable direct cost to the agricultural industry through losses in milk and meat yields, and through damage to hides and wool, etc. So, not surprisingly, many books of medical and veterinary entomology have been written. Most of these texts are organized taxonomically giving the details of the life-cycles, bionomics, relationship to disease and economic importance of each of the insect groups in turn. I have taken a different approach. This book is topic led and aims to discuss the biological themes which are common in the lives of blood-sucking insects. To do this I have concentrated on those aspects of the biology of these fascinating insects which have been clearly modified in some way to suit the blood-sucking habit. For example, I have discussed feeding and digestion in some detail because feeding on blood presents insects with special problems, but I have not discussed respiration because it is not affected in any particular way by haematophagy. Naturally there is a subjective element in the choice of topics for discussion and the weight given to each. I hope that I have not let my enthusiasm for particular subjects get the better of me on too many occasions and that the subject material achieves an overall balance.
FULL COLOR and Enlarged Edition - California has more than twenty-five native species, natural hybrids, and varieties of oaks (Quercus species). The form of these oaks ranges from large trees, up to about 25 m tall, to shrubs no taller than about 1.5 m. California's native oaks include representatives of three oak subgroups or subgenera (Table 1). Hybridization only occurs between oaks in the same subgroup. In addition, some insects, pathogens, and other agents may selectively colonize or damage oaks in certain subgroups.
Volume Two of the new guide to the study of biodiversity in insects Volume Two of Insect Biodiversity: Science and Society presents an entirely new, companion volume of a comprehensive resource for the most current research on the influence insects have on humankind and on our endangered environment. With contributions from leading researchers and scholars on the topic, the text explores relevant topics including biodiversity in different habitats and regions, taxonomic groups, and perspectives. Volume Two offers coverage of insect biodiversity in regional settings, such as the Arctic and Asia, and in particular habitats including crops, caves, and islands. The authors also include information on historical, cultural, technical, and climatic perspectives of insect biodiversity. This book explores the wide variety of insect species and their evolutionary relationships. Case studies offer assessments on how insect biodiversity can help meet the needs of a rapidly expanding human population, and examine the consequences that an increased loss of insect species will have on the world. This important text: Offers the most up-to-date information on the important topic of insect biodiversity Explores vital topics such as the impact on insect biodiversity through habitat loss and degradation and climate change With its companion Volume I, presents current information on the biodiversity of all insect orders Contains reviews of insect biodiversity in culture and art, in the fossil record, and in agricultural systems Includes scientific approaches and methods for the study of insect biodiversity The book offers scientists, academics, professionals, and students a guide for a better understanding of the biology and ecology of insects, highlighting the need to sustainably manage ecosystems in an ever-changing global environment.
Insect Biology in the Future: ""VBW 80"" contains essays presented to Sir Vincent Wigglesworth during his 80th year. Wigglesworth is fairly designated as the founding father and remarkable leader of insect physiology. His papers and other works significantly contribute to this field of study. This book, dedicated to him, underlines the value of insect material in approaching a wide spectrum of biological issues. The essays in this book tackle the insects' physiology, including their evolution and dominance. The papers also discuss the various avenues of water loss and gain as interrelated components of overall water balance in land arthropods. This reference suggests possible areas for further research mainly at the whole animal level. It also describes the fat body, hemolymph, endocrine control of vitellogenin synthesis, reproduction, growth, hormones, chemistry, defense, and survival of insects. Other topics of importance include cell communication and pattern formation in insects; plant-insect interaction; and insecticides.
Biology of Disease Vectors presents a comprehensive and advanced discussion of disease vectors and what the future may hold for their control. This edition examines the control of disease vectors through topics such as general biological requirements of vectors, epidemiology, physiology and molecular biology, genetics, principles of control and insecticide resistance. Methods of maintaining vectors in the laboratory are also described in detail.No other single volume includes both basic information on vectors, as well as chapters on cutting-edge topics, authored by the leading experts in the field. The first edition of Biology of Disease Vectors was a landmark text, and this edition promises to have even more impact as a reference for current thought and techniques in vector biology.Current - each chapter represents the present state of knowledge in the subject areaAuthoritative - authors include leading researchers in the fieldComplete - provides both independent investigator and the student with a single reference volume which adopts an explicitly evolutionary viewpoint throuoghout all chapters. Useful - conceptual frameworks for all subject areas include crucial information needed for application to difficult problems of controlling vector-borne diseases
The associations between insects and microorganisms, while pervasive and of paramount ecological importance, have been relatively poorly understood. The third book in this set, Insect Symbiosis, Volume 3, complements the previous volumes in exploring this somewhat uncharted territory. Like its predecessors, Volume 3 illustrates how symbiosis resear