Normed Algebras

Normed Algebras

Author: M.A. Naimark

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 613

ISBN-13: 9400992602

DOWNLOAD EBOOK

book and to the publisher NOORDHOFF who made possible the appearance of the second edition and enabled the author to introduce the above-mentioned modifi cations and additions. Moscow M. A. NAIMARK August 1963 FOREWORD TO THE SECOND SOVIET EDITION In this second edition the initial text has been worked over again and improved, certain portions have been completely rewritten; in particular, Chapter VIII has been rewritten in a more accessible form. The changes and extensions made by the author in the Japanese, German, first and second (= first revised) American, and also in the Romanian (lithographed) editions, were hereby taken into account. Appendices II and III, which are necessary for understanding Chapter VIII, have been included for the convenience of the reader. The book discusses many new theoretical results which have been developing in tensively during the decade after the publication of the first edition. Of course, lim itations on the volume of the book obliged the author to make a tough selection and in many cases to limit himself to simply a formulation of the new results or to pointing out the literature. The author was also compelled to make a choice of the exceptionally extensive collection of new works in extending the literature list. Monographs and survey articles on special topics of the theory which have been published during the past decade have been included in this list and in the litera ture pointed out in the individual chapters.


Complete Normed Algebras

Complete Normed Algebras

Author: Frank F. Bonsall

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 312

ISBN-13: 3642656692

DOWNLOAD EBOOK

The axioms of a complex Banach algebra were very happily chosen. They are simple enough to allow wide ranging fields of application, notably in harmonic analysis, operator theory and function algebras. At the same time they are tight enough to allow the development of a rich collection of results, mainly through the interplay of the elementary parts of the theories of analytic functions, rings, and Banach spaces. Many of the theorems are things of great beauty, simple in statement, surprising in content, and elegant in proof. We believe that some of them deserve to be known by every mathematician. The aim of this book is to give an account of the principal methods and results in the theory of Banach algebras, both commutative and non commutative. It has been necessary to apply certain exclusion principles in order to keep our task within bounds. Certain classes of concrete Banach algebras have a very rich literature, namely C*-algebras, function algebras, and group algebras. We have regarded these highly developed theories as falling outside our scope. We have not entirely avoided them, but have been concerned with their place in the general theory, and have stopped short of developing their special properties. For reasons of space and time we have omitted certain other topics which would quite naturally have been included, in particular the theories of multipliers and of extensions of Banach algebras, and the implications for Banach algebras of some of the standard algebraic conditions on rings.


Non-Associative Normed Algebras

Non-Associative Normed Algebras

Author: Miguel Cabrera García

Publisher: Cambridge University Press

Published: 2014-07-31

Total Pages: 735

ISBN-13: 1107043069

DOWNLOAD EBOOK

The first systematic account of the basic theory of normed algebras, without assuming associativity. Sure to become a central resource.


Non-Associative Normed Algebras : Volume 2, Representation Theory and the Zel'manov Approach

Non-Associative Normed Algebras : Volume 2, Representation Theory and the Zel'manov Approach

Author: Miguel Cabrera García

Publisher: Cambridge University Press

Published: 2018-04-12

Total Pages: 760

ISBN-13: 1108631436

DOWNLOAD EBOOK

This first systematic account of the basic theory of normed algebras, without assuming associativity, includes many new and unpublished results and is sure to become a central resource for researchers and graduate students in the field. This second volume revisits JB*-triples, covers Zel'manov's celebrated work in Jordan theory, proves the unit-free variant of the Vidav–Palmer theorem, and develops the representation theory of alternative C*-algebras and non-commutative JB*-algebras. This completes the work begun in the first volume, which introduced these algebras and discussed the so-called non-associative Gelfand–Naimark and Vidav–Palmer theorems. This book interweaves pure algebra, geometry of normed spaces, and infinite-dimensional complex analysis. Novel proofs are presented in complete detail at a level accessible to graduate students. The book contains a wealth of historical comments, background material, examples, and an extensive bibliography.


Non-Associative Normed Algebras: Volume 1, The Vidav–Palmer and Gelfand–Naimark Theorems

Non-Associative Normed Algebras: Volume 1, The Vidav–Palmer and Gelfand–Naimark Theorems

Author: Miguel Cabrera García

Publisher: Cambridge University Press

Published: 2014-07-31

Total Pages: 735

ISBN-13: 1139992775

DOWNLOAD EBOOK

This first systematic account of the basic theory of normed algebras, without assuming associativity, includes many new and unpublished results and is sure to become a central resource for researchers and graduate students in the field. This first volume focuses on the non-associative generalizations of (associative) C*-algebras provided by the so-called non-associative Gelfand–Naimark and Vidav–Palmer theorems, which give rise to alternative C*-algebras and non-commutative JB*-algebras, respectively. The relationship between non-commutative JB*-algebras and JB*-triples is also fully discussed. The second volume covers Zel'manov's celebrated work in Jordan theory to derive classification theorems for non-commutative JB*-algebras and JB*-triples, as well as other topics. The book interweaves pure algebra, geometry of normed spaces, and complex analysis, and includes a wealth of historical comments, background material, examples and exercises. The authors also provide an extensive bibliography.


Associative and Non-Associative Algebras and Applications

Associative and Non-Associative Algebras and Applications

Author: Mercedes Siles Molina

Publisher: Springer Nature

Published: 2020-01-02

Total Pages: 338

ISBN-13: 3030352560

DOWNLOAD EBOOK

This book gathers together selected contributions presented at the 3rd Moroccan Andalusian Meeting on Algebras and their Applications, held in Chefchaouen, Morocco, April 12-14, 2018, and which reflects the mathematical collaboration between south European and north African countries, mainly France, Spain, Morocco, Tunisia and Senegal. The book is divided in three parts and features contributions from the following fields: algebraic and analytic methods in associative and non-associative structures; homological and categorical methods in algebra; and history of mathematics. Covering topics such as rings and algebras, representation theory, number theory, operator algebras, category theory, group theory and information theory, it opens up new avenues of study for graduate students and young researchers. The findings presented also appeal to anyone interested in the fields of algebra and mathematical analysis.


Algebraic K-Theory

Algebraic K-Theory

Author: Hvedri Inassaridze

Publisher: Springer Science & Business Media

Published: 2013-03-14

Total Pages: 444

ISBN-13: 9401585695

DOWNLOAD EBOOK

Algebraic K-theory is a modern branch of algebra which has many important applications in fundamental areas of mathematics connected with algebra, topology, algebraic geometry, functional analysis and algebraic number theory. Methods of algebraic K-theory are actively used in algebra and related fields, achieving interesting results. This book presents the elements of algebraic K-theory, based essentially on the fundamental works of Milnor, Swan, Bass, Quillen, Karoubi, Gersten, Loday and Waldhausen. It includes all principal algebraic K-theories, connections with topological K-theory and cyclic homology, applications to the theory of monoid and polynomial algebras and in the theory of normed algebras. This volume will be of interest to graduate students and research mathematicians who want to learn more about K-theory.


Functional Analysis and Valuation Theory

Functional Analysis and Valuation Theory

Author: Lawrence Narici

Publisher: CRC Press

Published: 1971-06-01

Total Pages: 212

ISBN-13: 9780824714840

DOWNLOAD EBOOK

This book presents functional analysis over arbitrary valued fields and investigates normed spaces and algebras over fields with valuation, with attention given to the case when the norm and the valuation are nonarchimedean. It considers vector spaces over fields with nonarchimedean valuation.


Calculus on Normed Vector Spaces

Calculus on Normed Vector Spaces

Author: Rodney Coleman

Publisher: Springer Science & Business Media

Published: 2012-07-25

Total Pages: 255

ISBN-13: 1461438942

DOWNLOAD EBOOK

This book serves as an introduction to calculus on normed vector spaces at a higher undergraduate or beginning graduate level. The prerequisites include basic calculus and linear algebra, as well as a certain mathematical maturity. All the important topology and functional analysis topics are introduced where necessary. In its attempt to show how calculus on normed vector spaces extends the basic calculus of functions of several variables, this book is one of the few textbooks to bridge the gap between the available elementary texts and high level texts. The inclusion of many non-trivial applications of the theory and interesting exercises provides motivation for the reader.