NORD Guide to Rare Disorders is a comprehensive, practical, authoritative guide to the diagnosis and management of more than 800 rare diseases. The diseases are discussed in a uniform, easy-to-follow format--a brief description, signs and symptoms, etiology, related disorders, epidemiology, standard treatment, investigational treatment, resources, and references.The book includes a complete directory of orphan drugs, a full-color atlas of visual diagnostic signs, and a Master Resource List of support groups and helpful organizations. An index of symptoms and key words offers physicians valuable assistance in finding the information they need quickly.
Rare diseases collectively affect millions of Americans of all ages, but developing drugs and medical devices to prevent, diagnose, and treat these conditions is challenging. The Institute of Medicine (IOM) recommends implementing an integrated national strategy to promote rare diseases research and product development.
The fields of rare diseases research and orphan products development continue to expand with more products in research and development status. In recent years, the role of the patient advocacy groups has evolved into a research partner with the academic research community and the bio-pharmaceutical industry. Unique approaches to research and development require epidemiological data not previously available to assist in protocol study design and patient recruitment for clinical trials required by regulatory agencies prior to approval for access by patents and practicing physicians.
This book provides a broad overview of rare disease drug development. It offers unique insights from various perspectives, including third-party capital providers, caregivers, patient advocacy groups, drug development professionals, marketing and commercial experts, and patients. A unique reference, the book begins with narratives on the many challenges faced by rare disease patient and their caregivers. Subsequent chapters underscore the critical, multidimensional role of patient advocacy groups and the novel approaches to related clinical trials, investment decisions, and the optimization of rare disease registries. The book addresses various rare disease drug development processes by disciplines such as oncology, hematology, pediatrics, and gene therapy. Chapters then address the operational aspects of drug development, including approval processes, development accelerations, and market access strategies. The book concludes with reflections on the authors' case for real-world data and evidence generation in orphan medicinal drug development. Rare Disease Drug Development is an expertly written text optimized for biopharmaceutical R&D experts, commercial experts, third-party capital providers, patient advocacy groups, patients, and caregivers.
This User’s Guide is intended to support the design, implementation, analysis, interpretation, and quality evaluation of registries created to increase understanding of patient outcomes. For the purposes of this guide, a patient registry is an organized system that uses observational study methods to collect uniform data (clinical and other) to evaluate specified outcomes for a population defined by a particular disease, condition, or exposure, and that serves one or more predetermined scientific, clinical, or policy purposes. A registry database is a file (or files) derived from the registry. Although registries can serve many purposes, this guide focuses on registries created for one or more of the following purposes: to describe the natural history of disease, to determine clinical effectiveness or cost-effectiveness of health care products and services, to measure or monitor safety and harm, and/or to measure quality of care. Registries are classified according to how their populations are defined. For example, product registries include patients who have been exposed to biopharmaceutical products or medical devices. Health services registries consist of patients who have had a common procedure, clinical encounter, or hospitalization. Disease or condition registries are defined by patients having the same diagnosis, such as cystic fibrosis or heart failure. The User’s Guide was created by researchers affiliated with AHRQ’s Effective Health Care Program, particularly those who participated in AHRQ’s DEcIDE (Developing Evidence to Inform Decisions About Effectiveness) program. Chapters were subject to multiple internal and external independent reviews.
This book illustrates, in a comprehensive manner, the most crucial principles involved in pharmacology and allied sciences. The title begins by discussing the historical aspects of drug discovery, with up to date knowledge on Nobel Laureates in pharmacology and their significant discoveries. It then examines the general pharmacological principles - pharmacokinetics and pharmacodynamics, with in-depth information on drug transporters and interactions. In the remaining chapters, the book covers a definitive collection of topics containing essential information on the basic principles of pharmacology and how they are employed for the treatment of diseases. Readers will learn about special topics in pharmacology that are hard to find elsewhere, including issues related to environmental toxicology and the latest information on drug poisoning and treatment, analytical toxicology, toxicovigilance, and the use of molecular biology techniques in pharmacology. The book offers a valuable resource for researchers in the fields of pharmacology and toxicology, as well as students pursuing a degree in or with an interest in pharmacology.
SEMANTIC WEB FOR EFFECTIVE HEALTHCARE SYSTEMS The book summarizes the trends and current research advances in web semantics, delineating the existing tools, techniques, methodologies, and research solutions Semantic Web technologies have the opportunity to transform the way healthcare providers utilize technology to gain insights and knowledge from their data and make treatment decisions. Both Big Data and Semantic Web technologies can complement each other to address the challenges and add intelligence to healthcare management systems. The aim of this book is to analyze the current status on how the semantic web is used to solve health data integration and interoperability problems, and how it provides advanced data linking capabilities that can improve search and retrieval of medical data. Chapters analyze the tools and approaches to semantic health data analysis and knowledge discovery. The book discusses the role of semantic technologies in extracting and transforming healthcare data before storing it in repositories. It also discusses different approaches for integrating heterogeneous healthcare data. This innovative book offers: The first of its kind and highlights only the ontology driven information retrieval mechanisms and techniques being applied to healthcare as well as clinical information systems; Presents a comprehensive examination of the emerging research in areas of the semantic web; Discusses studies on new research areas including ontological engineering, semantic annotation and semantic sentiment analysis; Helps readers understand key concepts in semantic web applications for the biomedical engineering and healthcare fields; Includes coverage of key application areas of the semantic web. Audience: Researchers and graduate students in computer science, biomedical engineering, electronic and software engineering, as well as industry scientific researchers, clinicians, and systems managers in biomedical fields.
LOS ANGELES TIMES AND PUBLISHERS WEEKLY BESTSELLER • The powerful memoir of a young doctor and former college athlete diagnosed with a rare disease who spearheaded the search for a cure—and became a champion for a new approach to medical research. “A wonderful and moving chronicle of a doctor’s relentless pursuit, this book serves both patients and physicians in demystifying the science that lies behind medicine.”—Siddhartha Mukherjee, New York Times bestselling author of The Emperor of All Maladies and The Gene David Fajgenbaum, a former Georgetown quarterback, was nicknamed the Beast in medical school, where he was also known for his unmatched mental stamina. But things changed dramatically when he began suffering from inexplicable fatigue. In a matter of weeks, his organs were failing and he was read his last rites. Doctors were baffled by his condition, which they had yet to even diagnose. Floating in and out of consciousness, Fajgenbaum prayed for a second chance, the equivalent of a dramatic play to second the game into overtime. Miraculously, Fajgenbaum survived—only to endure repeated near-death relapses from what would eventually be identified as a form of Castleman disease, an extremely deadly and rare condition that acts like a cross between cancer and an autoimmune disorder. When he relapsed while on the only drug in development and realized that the medical community was unlikely to make progress in time to save his life, Fajgenbaum turned his desperate hope for a cure into concrete action: Between hospitalizations he studied his own charts and tested his own blood samples, looking for clues that could unlock a new treatment. With the help of family, friends, and mentors, he also reached out to other Castleman disease patients and physicians, and eventually came up with an ambitious plan to crowdsource the most promising research questions and recruit world-class researchers to tackle them. Instead of waiting for the scientific stars to align, he would attempt to align them himself. More than five years later and now married to his college sweetheart, Fajgenbaum has seen his hard work pay off: A treatment he identified has induced a tentative remission and his novel approach to collaborative scientific inquiry has become a blueprint for advancing rare disease research. His incredible story demonstrates the potency of hope, and what can happen when the forces of determination, love, family, faith, and serendipity collide. Praise for Chasing My Cure “A page-turning chronicle of living, nearly dying, and discovering what it really means to be invincible in hope.”—Angela Duckworth, #1 New York Times bestselling author of Grit “[A] remarkable memoir . . . Fajgenbaum writes lucidly and movingly . . . Fajgenbaum’s stirring account of his illness will inspire readers.”—Publishers Weekly
This authoritative and comprehensive book makes the reader familiar with the processes of bringing orphan drugs to the global market. There are between 5,000 and 7,000 rare diseases and the number of patients suffering from them is estimated to be more than 50 million in the US and Europe. Before the orphan drug legislation enacted in the US in 1983, there was a limited interest from industry to develop treatment for very small patient groups. One of the difficulties is, of course, that similar levels of investment are needed from a pharmaceutical company to bring a drug to the market for both small and large patient groups.The journey from application of an orphan drug designation to a reimbursed market- approved drug is long and many obstacles occur during the journey.After reading the book, readers will: Understand who the players/stakeholders are in the rare orphan disease field and their specific needs and concerns: patients and patient organizations, researchers and treating physicians within the field, industry, regulatory and reimbursement bodies* Understand the strong partnership between the different players and the various initiatives to improve and increase access to treatment for patients; minimizing the gap between numbers of known diseases, orphan designations, approved drugs and paid drugs.The book also provides short practical case stories from patients and researchers, as well as representatives from industry and authorities on the challenges they came across in developing orphan drugs or getting access to orphan drugs. - A comprehensive overview of strategy, key activities and considerations of how to bring an orphan drug from concept to the market and make it available to patients - A source of updated information, news and trends for those who are already active in this fast-evolving field - Covers the global definitions and the criteria for getting an orphan drug designation in, for example, the US and Europe
Orphan drugs are designated drug substances that are intended to treat rare or ‘orphan’ diseases. More than 7000 rare diseases are known that collectively affect some 6-7% of the developed world’s population; however, individually, any single, rare disease may only affect a handful of people making them commercially unattractive for the biopharmaceutical industry to target. Ground breaking legislation, starting with the Orphan Drug Act that was passed in the US in 1983 to provide financial incentives for companies to develop orphan drugs, has sparked ever increasing interest from biopharmaceutical companies to tackle rare diseases. These developments have made rare diseases, and the orphan drugs that treat them, sufficiently attractive to pharmaceutical development and many pharmaceutical companies now have research units dedicated to this area of research. It is therefore timely to review the area of orphan drugs and some of the basic science, drug discovery and regulatory factors that underpin this important, and growing, area of biomedical research. Written by a combination of academic and industry experts working in the field, this text brings together expert authors in the regulatory, drug development, genetics, biochemistry, patient advocacy group, medicinal chemistry and commercial domains to create a unique and timely reference for all biomedical researchers interested in finding out more about orphan drugs and the rare diseases they treat. Providing an up-to-date monograph, this book covers the basic science, drug discovery and regulatory elements behind orphan drugs and will appeal to medicinal and pharmaceutical chemists, biochemists and anyone working within the fields of rare disease research and drug development or pharmaceuticals in industry or academia.