Nonparametric Function Estimation, Modeling, and Simulation

Nonparametric Function Estimation, Modeling, and Simulation

Author: James R. Thompson

Publisher: SIAM

Published: 1990-01-01

Total Pages: 320

ISBN-13: 9781611971712

DOWNLOAD EBOOK

Topics emphasized include nonparametric density estimation as an exploratory device plus the deeper models to which the exploratory analysis points, multi-dimensional data analysis, and analysis of remote sensing data, cancer progression, chaos theory, epidemiological modeling, and parallel based algorithms. New methods discussed are quick nonparametric density estimation based techniques for resampling and simulation based estimation techniques not requiring closed form solutions.


Nonparametric and Semiparametric Models

Nonparametric and Semiparametric Models

Author: Wolfgang Karl Härdle

Publisher: Springer Science & Business Media

Published: 2012-08-27

Total Pages: 317

ISBN-13: 364217146X

DOWNLOAD EBOOK

The statistical and mathematical principles of smoothing with a focus on applicable techniques are presented in this book. It naturally splits into two parts: The first part is intended for undergraduate students majoring in mathematics, statistics, econometrics or biometrics whereas the second part is intended to be used by master and PhD students or researchers. The material is easy to accomplish since the e-book character of the text gives a maximum of flexibility in learning (and teaching) intensity.


Nonparametric Regression and Spline Smoothing, Second Edition

Nonparametric Regression and Spline Smoothing, Second Edition

Author: Randall L. Eubank

Publisher: CRC Press

Published: 1999-02-09

Total Pages: 368

ISBN-13: 9780824793371

DOWNLOAD EBOOK

Provides a unified account of the most popular approaches to nonparametric regression smoothing. This edition contains discussions of boundary corrections for trigonometric series estimators; detailed asymptotics for polynomial regression; testing goodness-of-fit; estimation in partially linear models; practical aspects, problems and methods for confidence intervals and bands; local polynomial regression; and form and asymptotic properties of linear smoothing splines.


Kernel Smoothing

Kernel Smoothing

Author: Sucharita Ghosh

Publisher: John Wiley & Sons

Published: 2018-01-09

Total Pages: 272

ISBN-13: 111845605X

DOWNLOAD EBOOK

Comprehensive theoretical overview of kernel smoothing methods with motivating examples Kernel smoothing is a flexible nonparametric curve estimation method that is applicable when parametric descriptions of the data are not sufficiently adequate. This book explores theory and methods of kernel smoothing in a variety of contexts, considering independent and correlated data e.g. with short-memory and long-memory correlations, as well as non-Gaussian data that are transformations of latent Gaussian processes. These types of data occur in many fields of research, e.g. the natural and the environmental sciences, and others. Nonparametric density estimation, nonparametric and semiparametric regression, trend and surface estimation in particular for time series and spatial data and other topics such as rapid change points, robustness etc. are introduced alongside a study of their theoretical properties and optimality issues, such as consistency and bandwidth selection. Addressing a variety of topics, Kernel Smoothing: Principles, Methods and Applications offers a user-friendly presentation of the mathematical content so that the reader can directly implement the formulas using any appropriate software. The overall aim of the book is to describe the methods and their theoretical backgrounds, while maintaining an analytically simple approach and including motivating examples—making it extremely useful in many sciences such as geophysics, climate research, forestry, ecology, and other natural and life sciences, as well as in finance, sociology, and engineering. A simple and analytical description of kernel smoothing methods in various contexts Presents the basics as well as new developments Includes simulated and real data examples Kernel Smoothing: Principles, Methods and Applications is a textbook for senior undergraduate and graduate students in statistics, as well as a reference book for applied statisticians and advanced researchers.


Safety, Reliability, Risk and Life-Cycle Performance of Structures and Infrastructures

Safety, Reliability, Risk and Life-Cycle Performance of Structures and Infrastructures

Author: George Deodatis

Publisher: CRC Press

Published: 2014-02-10

Total Pages: 1112

ISBN-13: 1315884887

DOWNLOAD EBOOK

Safety, Reliability, Risk and Life-Cycle Performance of Structures and Infrastructures contains the plenary lectures and papers presented at the 11th International Conference on STRUCTURAL SAFETY AND RELIABILITY (ICOSSAR2013, New York, NY, USA, 16-20 June 2013), and covers major aspects of safety, reliability, risk and life-cycle performance of str


Applied Stochastic Modelling

Applied Stochastic Modelling

Author: Byron J.T. Morgan

Publisher: CRC Press

Published: 2008-12-02

Total Pages: 363

ISBN-13: 1420011650

DOWNLOAD EBOOK

Highlighting modern computational methods, Applied Stochastic Modelling, Second Edition provides students with the practical experience of scientific computing in applied statistics through a range of interesting real-world applications. It also successfully revises standard probability and statistical theory. Along with an updated bibliography and


Nonparametric Functional Estimation and Related Topics

Nonparametric Functional Estimation and Related Topics

Author: G.G Roussas

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 691

ISBN-13: 9401132224

DOWNLOAD EBOOK

About three years ago, an idea was discussed among some colleagues in the Division of Statistics at the University of California, Davis, as to the possibility of holding an international conference, focusing exclusively on nonparametric curve estimation. The fruition of this idea came about with the enthusiastic support of this project by Luc Devroye of McGill University, Canada, and Peter Robinson of the London School of Economics, UK. The response of colleagues, contacted to ascertain interest in participation in such a conference, was gratifying and made the effort involved worthwhile. Devroye and Robinson, together with this editor and George Metakides of the University of Patras, Greece and of the European Economic Communities, Brussels, formed the International Organizing Committee for a two week long Advanced Study Institute (ASI) sponsored by the Scientific Affairs Division of the North Atlantic Treaty Organization (NATO). The ASI was held on the Greek Island of Spetses between July 29 and August 10, 1990. Nonparametric functional estimation is a central topic in statistics, with applications in numerous substantive fields in mathematics, natural and social sciences, engineering and medicine. While there has been interest in nonparametric functional estimation for many years, this has grown of late, owing to increasing availability of large data sets and the ability to process them by means of improved computing facilities, along with the ability to display the results by means of sophisticated graphical procedures.


Observed Confidence Levels

Observed Confidence Levels

Author: Alan M. Polansky

Publisher: CRC Press

Published: 2007-10-26

Total Pages: 288

ISBN-13: 9781584888031

DOWNLOAD EBOOK

Illustrating a simple, novel method for solving an array of statistical problems, Observed Confidence Levels: Theory and Application describes the basic development of observed confidence levels, a methodology that can be applied to a variety of common multiple testing problems in statistical inference. It focuses on the modern nonparametric framework of bootstrap-based estimates, allowing for substantial theoretical development and for relatively simple solutions to numerous interesting problems. After an introduction, the book develops the theory and application of observed confidence levels for general scalar parameters, vector parameters, and linear models. It then examines nonparametric problems often associated with smoothing methods, including nonparametric density estimation and regression. The author also describes applications in generalized linear models, classical nonparametric statistics, multivariate analysis, and survival analysis as well as compares the method of observed confidence levels to hypothesis testing, multiple comparisons, and Bayesian posterior probabilities. In addition, the appendix presents some background material on the asymptotic expansion theory used in the book. Helping you choose the most reliable method for a variety of problems, this book shows how observed confidence levels provide useful information on the relative truth of hypotheses in multiple testing problems.