Nonlinearity in Structural Dynamics

Nonlinearity in Structural Dynamics

Author: K Worden

Publisher: CRC Press

Published: 2019-04-23

Total Pages: 686

ISBN-13: 9781420033823

DOWNLOAD EBOOK

Many types of engineering structures exhibit nonlinear behavior under real operating conditions. Sometimes the unpredicted nonlinear behavior of a system results in catastrophic failure. In civil engineering, grandstands at sporting events and concerts may be prone to nonlinear oscillations due to looseness of joints, friction, and crowd movements.


Nonlinear Analysis of Structures (1997)

Nonlinear Analysis of Structures (1997)

Author: Muthukrishnan Sathyamoorthy

Publisher: CRC Press

Published: 2017-11-22

Total Pages: 548

ISBN-13: 1351359819

DOWNLOAD EBOOK

Nonlinear Analysis of Structures presents a complete evaluation of the nonlinear static and dynamic behavior of beams, rods, plates, trusses, frames, mechanisms, stiffened structures, sandwich plates, and shells. These elements are important components in a wide variety of structures and vehicles such as spacecraft and missiles, underwater vessels and structures, and modern housing. Today's engineers and designers must understand these elements and their behavior when they are subjected to various types of loads. Coverage includes the various types of nonlinearities, stress-strain relations and the development of nonlinear governing equations derived from nonlinear elastic theory. This complete guide includes both mathematical treatment and real-world applications, with a wealth of problems and examples to support the text. Special topics include a useful and informative chapter on nonlinear analysis of composite structures, and another on recent developments in symbolic computation. Designed for both self-study and classroom instruction, Nonlinear Analysis of Structures is also an authoritative reference for practicing engineers and scientists. One of the world's leaders in the study of nonlinear structural analysis, Professor Sathyamoorthy has made significant research contributions to the field of nonlinear mechanics for twenty-seven years. His foremost contribution to date has been the development of a unique transverse shear deformation theory for plates undergoing large amplitude vibrations and the examination of multiple mode solutions for plates. In addition to his notable research, Professor Sathyamoorthy has also developed and taught courses in the field at universities in India, Canada, and the United States.


Diagnosis of Process Nonlinearities and Valve Stiction

Diagnosis of Process Nonlinearities and Valve Stiction

Author: Ali Ahammad Shoukat Choudhury

Publisher: Springer Science & Business Media

Published: 2008-08-20

Total Pages: 292

ISBN-13: 3540792244

DOWNLOAD EBOOK

were published in the series as the contributed volume, Process Control Performance Assessment: From Theory to Implementation with Andrzej Ordys, Damian Uduehi, and Michael Johnson as Editors (ISBN 978-1-84628-623-0, 2007). Along with this good progress in process controller assessment methods, researchers have also been investigating techniques to diagnose what is causing the process or control loop degradation. This requires the use of on-line data to identify faults via new diagnostic indicators of typical process problems. A significant focus of some of this research has been the issue of valve problems; a research direction that has been motivated by some industrial statistics that show up to 40% of control loops having performance degradation attributable to valve problems. Shoukat Choudhury, Sirish Shah, and Nina Thornhill have been very active in this research field for a number of years and have written a coherent and consistent presentation of their many research results as this monograph, Diagnosis of Process Nonlinearities and Valve Stiction. The Advances in Industrial Control series is pleased to welcome this new and substantial contribution to the process diagnostic literature. The reader will find the exploitation of the extensive process data archives created by today’s process computer systems one theme in the monograph. From another viewpoint, the use of higher-order statistics could be considered to provide a continuing link to the earlier methods of the statistical process control paradigm.


Intelligent Observer and Control Design for Nonlinear Systems

Intelligent Observer and Control Design for Nonlinear Systems

Author: Dierk Schröder

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 346

ISBN-13: 3662041170

DOWNLOAD EBOOK

This application-oriented monograph focuses on a novel and complex type of control systems. Written on an engineering level, including fundamentals, advanced methods and applications, the book applies techniques originating from new methods such as artificial intelligence, fuzzy logic, neural networks etc.


Complex Nonlinearity

Complex Nonlinearity

Author: Vladimir G. Ivancevic

Publisher: Springer Science & Business Media

Published: 2008-05-31

Total Pages: 855

ISBN-13: 3540793577

DOWNLOAD EBOOK

Complex Nonlinearity: Chaos, Phase Transitions, Topology Change and Path Integrals is a book about prediction & control of general nonlinear and chaotic dynamics of high-dimensional complex systems of various physical and non-physical nature and their underpinning geometro-topological change. The book starts with a textbook-like expose on nonlinear dynamics, attractors and chaos, both temporal and spatio-temporal, including modern techniques of chaos–control. Chapter 2 turns to the edge of chaos, in the form of phase transitions (equilibrium and non-equilibrium, oscillatory, fractal and noise-induced), as well as the related field of synergetics. While the natural stage for linear dynamics comprises of flat, Euclidean geometry (with the corresponding calculation tools from linear algebra and analysis), the natural stage for nonlinear dynamics is curved, Riemannian geometry (with the corresponding tools from nonlinear, tensor algebra and analysis). The extreme nonlinearity – chaos – corresponds to the topology change of this curved geometrical stage, usually called configuration manifold. Chapter 3 elaborates on geometry and topology change in relation with complex nonlinearity and chaos. Chapter 4 develops general nonlinear dynamics, continuous and discrete, deterministic and stochastic, in the unique form of path integrals and their action-amplitude formalism. This most natural framework for representing both phase transitions and topology change starts with Feynman’s sum over histories, to be quickly generalized into the sum over geometries and topologies. The last Chapter puts all the previously developed techniques together and presents the unified form of complex nonlinearity. Here we have chaos, phase transitions, geometrical dynamics and topology change, all working together in the form of path integrals. The objective of this book is to provide a serious reader with a serious scientific tool that will enable them to actually perform a competitive research in modern complex nonlinearity. It includes a comprehensive bibliography on the subject and a detailed index. Target readership includes all researchers and students of complex nonlinear systems (in physics, mathematics, engineering, chemistry, biology, psychology, sociology, economics, medicine, etc.), working both in industry/clinics and academia.


Nonlinearity in Energy Harvesting Systems

Nonlinearity in Energy Harvesting Systems

Author: Elena Blokhina

Publisher: Springer

Published: 2016-11-10

Total Pages: 361

ISBN-13: 331920355X

DOWNLOAD EBOOK

This book is a single-source guide to nonlinearity and nonlinear techniques in energy harvesting, with a focus on vibration energy harvesters for micro and nanoscale applications. The authors demonstrate that whereas nonlinearity was avoided as an undesirable phenomenon in early energy harvesters, now it can be used as an essential part of these systems. Readers will benefit from an overview of nonlinear techniques and applications, as well as deeper insight into methods of analysis and modeling of energy harvesters, employing different nonlinearities. The role of nonlinearity due to different aspects of an energy harvester is discussed, including nonlinearity due to mechanical-to-electrical conversion, nonlinearity due to conditioning electronic circuits, nonlinearity due to novel materials (e.g., graphene), etc. Coverage includes tutorial introductions to MEMS and NEMS technology, as well as a wide range of applications, such as nonlinear oscillators and transducers for energy harvesters and electronic conditioning circuits for effective energy processing.


Chaos, Nonlinearity, Complexity

Chaos, Nonlinearity, Complexity

Author: Ashok Sengupta

Publisher: Springer

Published: 2006-08-29

Total Pages: 372

ISBN-13: 3540317570

DOWNLOAD EBOOK

This book explores non-extensive statistical mechanics in non-equilibrium thermodynamics, and presents an overview of the strong nonlinearity of chaos and complexity in natural systems, drawing on relevant mathematics from topology, measure-theory, inverse and ill-posed problems, set-valued analysis, and nonlinear functional analysis. It offers a self-contained theory of complexity and complex systems as the steady state of non-equilibrium systems, denoting a homeostatic dynamic equilibrium between stabilizing order and destabilizing disorder.


Matrix Analysis of Structural Dynamics

Matrix Analysis of Structural Dynamics

Author: Franklin Y. Cheng

Publisher: CRC Press

Published: 2000-10-19

Total Pages: 1024

ISBN-13: 9780203904206

DOWNLOAD EBOOK

Uses state-of-the-art computer technology to formulate displacement method with matrix algebra. Facilitates analysis of structural dynamics and applications to earthquake engineering and UBC and IBC seismic building codes.


Finite Element Simulations with ANSYS Workbench 2022

Finite Element Simulations with ANSYS Workbench 2022

Author: Huei-Huang Lee

Publisher: SDC Publications

Published:

Total Pages: 618

ISBN-13: 1630575399

DOWNLOAD EBOOK

Finite Element Simulations with ANSYS Workbench 2022 is a comprehensive and easy to understand workbook. Printed in full color, it utilizes rich graphics and step-by-step instructions to guide you through learning how to perform finite element simulations using ANSYS Workbench. Twenty seven real world case studies are used throughout the book. Many of these case studies are industrial or research projects that you build from scratch. Prebuilt project files are available for download should you run into any problems. Companion videos, that demonstrate exactly how to perform each tutorial, are also available. Relevant background knowledge is reviewed whenever necessary. To be efficient, the review is conceptual rather than mathematical. Key concepts are inserted whenever appropriate and summarized at the end of each chapter. Additional exercises or extension research problems are provided as homework at the end of each chapter. A learning approach emphasizing hands-on experiences is utilized though this entire book. A typical chapter consists of six sections. The first two provide two step-by-step examples. The third section tries to complement the exercises by providing a more systematic view of the chapter subject. The following two sections provide more exercises. The final section provides review problems. Who this book is for This book is designed to be used mainly as a textbook for undergraduate and graduate students. It will work well in: • a finite element simulation course taken before any theory-intensive courses • an auxiliary tool used as a tutorial in parallel during a Finite Element Methods course • an advanced, application oriented, course taken after a Finite Element Methods course


Finite Element Simulations with ANSYS Workbench 2020

Finite Element Simulations with ANSYS Workbench 2020

Author: Huei-Huang Lee

Publisher: SDC Publications

Published: 2020-09-18

Total Pages: 621

ISBN-13: 1630574015

DOWNLOAD EBOOK

Finite Element Simulations with ANSYS Workbench 2020 is a comprehensive and easy to understand workbook. Printed in full color, it utilizes rich graphics and step-by-step instructions to guide you through learning how to perform finite element simulations using ANSYS Workbench. Twenty seven real world case studies are used throughout the book. Many of these case studies are industrial or research projects that you build from scratch. Prebuilt project files are available for download should you run into any problems. Companion videos, that demonstrate exactly how to perform each tutorial, are also available. Relevant background knowledge is reviewed whenever necessary. To be efficient, the review is conceptual rather than mathematical. Key concepts are inserted whenever appropriate and summarized at the end of each chapter. Additional exercises or extension research problems are provided as homework at the end of each chapter. A learning approach emphasizing hands-on experiences is utilized though this entire book. A typical chapter consists of six sections. The first two provide two step-by-step examples. The third section tries to complement the exercises by providing a more systematic view of the chapter subject. The following two sections provide more exercises. The final section provides review problems. Who this book is for This book is designed to be used mainly as a textbook for undergraduate and graduate students. It will work well in: • a finite element simulation course taken before any theory-intensive courses • an auxiliary tool used as a tutorial in parallel during a Finite Element Methods course • an advanced, application oriented, course taken after a Finite Element Methods course