Nonlinear Waves in Active Media

Nonlinear Waves in Active Media

Author: Jüri Engelbrecht

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 284

ISBN-13: 3642747892

DOWNLOAD EBOOK

TIlis volume contains the contributions to the Euromech Colloquium No. 241 on Nonlinear Waves in Active Media at the Institute of Cybernetics of the Estonian Academy of Sciences, Tallinn, Estonia, USSR, September 27-30, 1988. The Co-chairmen of the Euromech Colloquium felt that it would be a good service to the community to publish these proceedings. First, the topic itself dealing with various wave processes with energy influx is extremely interesting and attracted a much larger number of participants than usual - a clear sign of its importance to the scientific community. Second, Euromech No. 241 was actually the first Euromech Colloquium held in the Soviet Union and could thus be viewed as a milestone in the extending scientific contacts between East and West. At the colloquium 50 researchers working in very different branches of sci ence met to lecture on their results and to discuss problems of common interest. An introductory paper by I. Engelbrecht presents the common motivation and background of the topics covered. Altogether 36 speakers presented their lectures, of which 30 are gathered here. The remaining six papers which will appear elsewhere are listed on page X. In addition, three contributions by authors who could not attend the colloquium are included. The two lectures given by A.S. Mikhailov, V.S. Davydov and V.S. Zykov are here published as one long paper.


Synchronization and Waves in Active Media

Synchronization and Waves in Active Media

Author: Jan Frederik Totz

Publisher: Springer

Published: 2019-01-18

Total Pages: 172

ISBN-13: 3030110575

DOWNLOAD EBOOK

The interplay between synchronization and spatio-temporal pattern formation is central for a broad variety of phenomena in nature, such as the coordinated contraction of heart tissue, associative memory and learning in neural networks, and pathological synchronization during Parkinson disease or epilepsy. In this thesis, three open puzzles of fundametal research in Nonlinear Dynamics are tackled: How does spatial confinement affect the dynamics of three-dimensional vortex rings? What role do permutation symmetries play in the spreading of excitation waves on networks? Does the spiral wave chimera state really exist? All investigations combine a theoretical approach and experimental verification, which exploit an oscillatory chemical reaction. A novel experimental setup is developed that allows for studying networks with N > 1000 neuromorphic relaxation oscillators. It facilitates the free choice of network topology, coupling function as well as its strength, range and time delay, which can even be chosen as time-dependent. These experimental capabilities open the door to a broad range of future experimental inquiries into pattern formation and synchronization on large networks, which were previously out of reach.


Nonlinear Waves in Solids

Nonlinear Waves in Solids

Author: A. Jeffrey

Publisher: Springer

Published: 2014-05-04

Total Pages: 385

ISBN-13: 3709124441

DOWNLOAD EBOOK

Travelling wave processes and wave motion are of great importance in many areas of mechanics, and nonlinearity also plays a decisive role there. The basic mathematical models in this area involve nonlinear partial differential equations, and predictability of behaviour of wave phenomena is of great importance. Beside fluid dynamics and gas dynamics, which have long been the traditional nonlinear scienes, solid mechanics is now taking an ever increasing account of nonlinear effects. Apart from plasticity and fracture mechanics, nonlinear elastic waves have been shown to be of great importance in many areas, such as the study of impact, nondestructive testing and seismology. These lectures offer a thorough account of the fundamental theory of nonlinear deformation waves, and in the process offer an up to date account of the current state of research in the theory and practice of nonlinear waves in solids.


Nonlinear Waves in Elastic Crystals

Nonlinear Waves in Elastic Crystals

Author: Gérard A. Maugin

Publisher:

Published: 1999

Total Pages: 328

ISBN-13: 9780198534846

DOWNLOAD EBOOK

The mathematical modelling of changing structures in materials is of increasing importance to industry where applications of the theory are found in subjects as diverse as aerospace and medicine. This book deals with aspects of the nonlinear dynamics of deformable ordered solids (known as elastic crystals) where the nonlinear effects combine or compete with each other. Physical and mathematical models are discused and computational aspects are also included. Different models are considered - on discrete as well as continuum scales - applying heat, electricity, or magnetism to the crystal structure and these are analysed using the equations of rational mechanics. Students are introduced to the important equations of nonlinear science that describe shock waves, solitons and chaos and also the non-exactly integrable systems or partial differential equations. A large number of problems and examples are included, many taken from recent research and involving both one-dimensional and two-dimensional problems as well as some coupled degress of freedom.


Amplification of Nonlinear Strain Waves in Solids

Amplification of Nonlinear Strain Waves in Solids

Author: Alexey V. Porubov

Publisher: World Scientific

Published: 2003

Total Pages: 229

ISBN-13: 9812383263

DOWNLOAD EBOOK

This book treats two problems simultaneously: sequential analytical consideration of nonlinear strain wave amplification and selection in wave guides and in a medium; demonstration of the use of even particular analytical solutions to nonintegrable equations in a design of numerical simulation of unsteady nonlinear wave processes. The text includes numerous detailed examples of the strain wave amplification and selection caused by the influence of an external medium, microstructure, moving point defects, and thermal phenomena. The main features of the book are: (1) nonlinear models of the strain wave evolution in a rod subjected by various dissipative/active factors; (2) an analytico-numerical approach for solutions to the governing nonlinear partial differential equations with dispersion and dissipation. This book is essential for introducing readers in mechanics, mechanical engineering, and applied mathematics to the concept of long nonlinear strain wave in one-dimensional wave guides. It is also suitable for self-study by professionals in all areas of nonlinear physics.


Nonlinear Wave Dynamics

Nonlinear Wave Dynamics

Author: J. Engelbrecht

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 197

ISBN-13: 9401588910

DOWNLOAD EBOOK

At the end of the twentieth century, nonlinear dynamics turned out to be one of the most challenging and stimulating ideas. Notions like bifurcations, attractors, chaos, fractals, etc. have proved to be useful in explaining the world around us, be it natural or artificial. However, much of our everyday understanding is still based on linearity, i. e. on the additivity and the proportionality. The larger the excitation, the larger the response-this seems to be carved in a stone tablet. The real world is not always reacting this way and the additivity is simply lost. The most convenient way to describe such a phenomenon is to use a mathematical term-nonlinearity. The importance of this notion, i. e. the importance of being nonlinear is nowadays more and more accepted not only by the scientific community but also globally. The recent success of nonlinear dynamics is heavily biased towards temporal characterization widely using nonlinear ordinary differential equations. Nonlinear spatio-temporal processes, i. e. nonlinear waves are seemingly much more complicated because they are described by nonlinear partial differential equations. The richness of the world may lead in this case to coherent structures like solitons, kinks, breathers, etc. which have been studied in detail. Their chaotic counterparts, however, are not so explicitly analysed yet. The wavebearing physical systems cover a wide range of phenomena involving physics, solid mechanics, hydrodynamics, biological structures, chemistry, etc.


Questions About Elastic Waves

Questions About Elastic Waves

Author: Jüri Engelbrecht

Publisher: Springer

Published: 2015-03-05

Total Pages: 205

ISBN-13: 3319147919

DOWNLOAD EBOOK

This book addresses the modelling of mechanical waves by asking the right questions about them and trying to find suitable answers. The questions follow the analytical sequence from elementary understandings to complicated cases, following a step-by-step path towards increased knowledge. The focus is on waves in elastic solids, although some examples also concern non-conservative cases for the sake of completeness. Special attention is paid to the understanding of the influence of microstructure, nonlinearity and internal variables in continua. With the help of many mathematical models for describing waves, physical phenomena concerning wave dispersion, nonlinear effects, emergence of solitary waves, scales and hierarchies of waves as well as the governing physical parameters are analysed. Also, the energy balance in waves and non-conservative models with energy influx are discussed. Finally, all answers are interwoven into the canvas of complexity.


Nonlinear Waves 3

Nonlinear Waves 3

Author: Andrei V. Gaponov-Grekhov

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 337

ISBN-13: 3642753086

DOWNLOAD EBOOK

Since 1972 the Schools on Nonlinear Physics in Gorky have been a meeting place for Soviet Scientists working in this field. Since 1989 the proceedings appear in English. They present a good cross section of nonlinear physics in the USSR. This third volume emerged from material presented at the 1989 School. It contains sections dealing with nonlinear problems in physics and astrophysics, quantum and solid state physics, dynamical chaos and self-organization.