Nonlinear System Identification

Nonlinear System Identification

Author: Stephen A. Billings

Publisher: John Wiley & Sons

Published: 2013-07-29

Total Pages: 611

ISBN-13: 1118535553

DOWNLOAD EBOOK

Nonlinear System Identification: NARMAX Methods in the Time, Frequency, and Spatio-Temporal Domains describes a comprehensive framework for the identification and analysis of nonlinear dynamic systems in the time, frequency, and spatio-temporal domains. This book is written with an emphasis on making the algorithms accessible so that they can be applied and used in practice. Includes coverage of: The NARMAX (nonlinear autoregressive moving average with exogenous inputs) model The orthogonal least squares algorithm that allows models to be built term by term where the error reduction ratio reveals the percentage contribution of each model term Statistical and qualitative model validation methods that can be applied to any model class Generalised frequency response functions which provide significant insight into nonlinear behaviours A completely new class of filters that can move, split, spread, and focus energy The response spectrum map and the study of sub harmonic and severely nonlinear systems Algorithms that can track rapid time variation in both linear and nonlinear systems The important class of spatio-temporal systems that evolve over both space and time Many case study examples from modelling space weather, through identification of a model of the visual processing system of fruit flies, to tracking causality in EEG data are all included to demonstrate how easily the methods can be applied in practice and to show the insight that the algorithms reveal even for complex systems NARMAX algorithms provide a fundamentally different approach to nonlinear system identification and signal processing for nonlinear systems. NARMAX methods provide models that are transparent, which can easily be analysed, and which can be used to solve real problems. This book is intended for graduates, postgraduates and researchers in the sciences and engineering, and also for users from other fields who have collected data and who wish to identify models to help to understand the dynamics of their systems.


Nonlinear System Identification

Nonlinear System Identification

Author: Oliver Nelles

Publisher: Springer Nature

Published: 2020-09-09

Total Pages: 1235

ISBN-13: 3030474399

DOWNLOAD EBOOK

This book provides engineers and scientists in academia and industry with a thorough understanding of the underlying principles of nonlinear system identification. It equips them to apply the models and methods discussed to real problems with confidence, while also making them aware of potential difficulties that may arise in practice. Moreover, the book is self-contained, requiring only a basic grasp of matrix algebra, signals and systems, and statistics. Accordingly, it can also serve as an introduction to linear system identification, and provides a practical overview of the major optimization methods used in engineering. The focus is on gaining an intuitive understanding of the subject and the practical application of the techniques discussed. The book is not written in a theorem/proof style; instead, the mathematics is kept to a minimum, and the ideas covered are illustrated with numerous figures, examples, and real-world applications. In the past, nonlinear system identification was a field characterized by a variety of ad-hoc approaches, each applicable only to a very limited class of systems. With the advent of neural networks, fuzzy models, Gaussian process models, and modern structure optimization techniques, a much broader class of systems can now be handled. Although one major aspect of nonlinear systems is that virtually every one is unique, tools have since been developed that allow each approach to be applied to a wide variety of systems.


Block-oriented Nonlinear System Identification

Block-oriented Nonlinear System Identification

Author: Fouad Giri

Publisher: Springer Science & Business Media

Published: 2010-08-18

Total Pages: 425

ISBN-13: 1849965129

DOWNLOAD EBOOK

Block-oriented Nonlinear System Identification deals with an area of research that has been very active since the turn of the millennium. The book makes a pedagogical and cohesive presentation of the methods developed in that time. These include: iterative and over-parameterization techniques; stochastic and frequency approaches; support-vector-machine, subspace, and separable-least-squares methods; blind identification method; bounded-error method; and decoupling inputs approach. The identification methods are presented by authors who have either invented them or contributed significantly to their development. All the important issues e.g., input design, persistent excitation, and consistency analysis, are discussed. The practical relevance of block-oriented models is illustrated through biomedical/physiological system modelling. The book will be of major interest to all those who are concerned with nonlinear system identification whatever their activity areas. This is particularly the case for educators in electrical, mechanical, chemical and biomedical engineering and for practising engineers in process, aeronautic, aerospace, robotics and vehicles control. Block-oriented Nonlinear System Identification serves as a reference for active researchers, new comers, industrial and education practitioners and graduate students alike.


Nonlinear System Identification

Nonlinear System Identification

Author: Oliver Nelles

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 785

ISBN-13: 3662043238

DOWNLOAD EBOOK

Written from an engineering point of view, this book covers the most common and important approaches for the identification of nonlinear static and dynamic systems. The book also provides the reader with the necessary background on optimization techniques, making it fully self-contained. The new edition includes exercises.


Nonlinear system identification. 2. Nonlinear system structure identification

Nonlinear system identification. 2. Nonlinear system structure identification

Author: Robert Haber

Publisher: Springer Science & Business Media

Published: 1999

Total Pages: 428

ISBN-13: 9780792358572

DOWNLOAD EBOOK

This is the second part of a two-volume handbook presenting a comprehensive overview of nonlinear dynamic system identification. The books include many aspects of nonlinear processes such as modelling, parameter estimation, structure search, nonlinearity and model validity tests.


Nonlinearity in Structural Dynamics

Nonlinearity in Structural Dynamics

Author: K Worden

Publisher: CRC Press

Published: 2019-04-23

Total Pages: 571

ISBN-13: 0429524986

DOWNLOAD EBOOK

Many types of engineering structures exhibit nonlinear behavior under real operating conditions. Sometimes the unpredicted nonlinear behavior of a system results in catastrophic failure. In civil engineering, grandstands at sporting events and concerts may be prone to nonlinear oscillations due to looseness of joints, friction, and crowd movements.


Identification of Nonlinear Physiological Systems

Identification of Nonlinear Physiological Systems

Author: David T. Westwick

Publisher: John Wiley & Sons

Published: 2003-08-28

Total Pages: 284

ISBN-13: 9780471274568

DOWNLOAD EBOOK

Significant advances have been made in the field since the previous classic texts were written. This text brings the available knowledge up to date. * Enables the reader to use a wide variety of nonlinear system identification techniques. * Offers a thorough treatment of the underlying theory. * Provides a MATLAB toolbox containing implementation of the latest identification methods together with an extensive set of problems using realistic data sets.


The Mechanics of Jointed Structures

The Mechanics of Jointed Structures

Author: Matthew R.W. Brake

Publisher: Springer

Published: 2017-07-11

Total Pages: 690

ISBN-13: 3319568183

DOWNLOAD EBOOK

This book introduces the challenges inherent in jointed structures and guides researchers to the still-open, pressing challenges that need to be solved to advance this critical field. The authors cover multiple facets of interfacial mechanics that pertain to jointed structures: tribological modeling and measurements of the interface surfaces, constitutive modeling of joints, numerical reduction techniques for structures with joints, and uncertainty quantification and propagation for these structures. Thus, the key subspecialties addressed are model reduction for nonlinear systems, uncertainty quantification, constitutive modeling of joints, and measurements of interfacial mechanics properties (including tribology). The diverse contributions to this volume fill a much needed void in the literature and present to a new generation of joints researchers the potential challenges that they can engage in in order to advance the state of the art. Clearly defines internationally recognized challenges in joint mechanics/jointed structures and provides a comprehensive assessment of the state-of-the-art for joint modeling; Identifies open research questions facing joint mechanics; Details methodologies for accounting for uncertainties (due both to missing physics and variability) in joints; Explains and illustrates best-practices for measuring joints’ properties experimentally; Maximizes reader understanding of modeling joint dynamics with a comparison of multiple approaches.


Identification of Linear Systems

Identification of Linear Systems

Author: J. Schoukens

Publisher: Elsevier

Published: 2014-06-28

Total Pages: 353

ISBN-13: 0080912567

DOWNLOAD EBOOK

This book concentrates on the problem of accurate modeling of linear systems. It presents a thorough description of a method of modeling a linear dynamic invariant system by its transfer function. The first two chapters provide a general introduction and review for those readers who are unfamiliar with identification theory so that they have a sufficient background knowledge for understanding the methods described later. The main body of the book looks at the basic method used by the authors to estimate the parameter of the transfer function, how it is possible to optimize the excitation signals. Further chapters extend the estimation method proposed. Applications are then discussed and the book concludes with practical guidelines which illustrate the method and offer some rules-of-thumb.