Publishes papers that report results of research in statistical physics, plasmas, fluids, and related interdisciplinary topics. There are sections on (1) methods of statistical physics, (2) classical fluids, (3) liquid crystals, (4) diffusion-limited aggregation, and dendritic growth, (5) biological physics, (6) plasma physics, (7) physics of beams, (8) classical physics, including nonlinear media, and (9) computational physics.
Proceedings of the October 1995 workshop on space charge dominated beams, which took a close look at major breakthroughs of the past few years. The workshop results are organized in sections on topics of general interest; experiments with space charge dominated beams and halo formation; statistical
Chaos control refers to purposefully manipulating chaotic dynamical behaviors of some complex nonlinear systems. There exists no similar control theory-oriented book available in the market that is devoted to the subject of chaos control, written by control engineers for control engineers. World-renowned leading experts in the field provide their state-of-the-art survey about the extensive research that has been done over the last few years in this subject. The new technology of chaos control has major impact on novel engineering applications such as telecommunications, power systems, liquid mixing, internet technology, high-performance circuits and devices, biological systems modeling like the brain and the heart, and decision making. The book is not only aimed at active researchers in the field of chaos control involving control and systems engineers, theoretical and experimental physicists, and applied mathematicians, but also at a general audience in related fields.
This book documents comprehensive reviews and state-of-the-art studies in the dynamics, diagnostics, and collimation of charged-particle beam halo and in beam-beam interaction. Challenges and solutions to major accelerator facilities in Europe, Asia, and America in the domain of high intensity, high energy, and high brightness charged particles are presented. Latest breakthroughs in physical analysis, engineering design, and experimental tests are included.
Fusion is a combining of atoms to form other atoms, which occurs when their nuclei get close enough to each other. The energy that powers the sun actually comes from nuclear fusion. The realization of fusion in laboratory conditions requires 1000 trillion watts of a charged particle beam over a period of approx. 10 billionth of a second (10 nanoseconds) to ignite a target of thermonuclear fuel. Due to natural repulsion of particles via Coulomb forces, beam space charge effects remain the key problem for designers of high intensity accelerators for heavy ion fusion. The subject of the RIKEN Symposium was to review the present understanding of space charge phenomena and to discuss possible solutions for unresolved problems.
Recent scientific and technical advances have made it possible to create matter in the laboratory under conditions relevant to astrophysical systems such as supernovae and black holes. These advances will also benefit inertial confinement fusion research and the nation's nuclear weapon's program. The report describes the major research facilities on which such high energy density conditions can be achieved and lists a number of key scientific questions about high energy density physics that can be addressed by this research. Several recommendations are presented that would facilitate the development of a comprehensive strategy for realizing these research opportunities.