Nonlinear Regression

Nonlinear Regression

Author: George A. F. Seber

Publisher: John Wiley & Sons

Published: 2005-02-25

Total Pages: 800

ISBN-13: 0471725307

DOWNLOAD EBOOK

WILEY-INTERSCIENCE PAPERBACK SERIES The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. From the Reviews of Nonlinear Regression "A very good book and an important one in that it is likely to become a standard reference for all interested in nonlinear regression; and I would imagine that any statistician concerned with nonlinear regression would want a copy on his shelves." –The Statistician "Nonlinear Regression also includes a reference list of over 700 entries. The compilation of this material and cross-referencing of it is one of the most valuable aspects of the book. Nonlinear Regression can provide the researcher unfamiliar with a particular specialty area of nonlinear regression an introduction to that area of nonlinear regression and access to the appropriate references . . . Nonlinear Regression provides by far the broadest discussion of nonlinear regression models currently available and will be a valuable addition to the library of anyone interested in understanding and using such models including the statistical researcher." –Mathematical Reviews


Fitting Models to Biological Data Using Linear and Nonlinear Regression

Fitting Models to Biological Data Using Linear and Nonlinear Regression

Author: Harvey Motulsky

Publisher: Oxford University Press

Published: 2004-05-27

Total Pages: 352

ISBN-13: 9780198038344

DOWNLOAD EBOOK

Most biologists use nonlinear regression more than any other statistical technique, but there are very few places to learn about curve-fitting. This book, by the author of the very successful Intuitive Biostatistics, addresses this relatively focused need of an extraordinarily broad range of scientists.


Nonlinear Regression Analysis and Its Applications

Nonlinear Regression Analysis and Its Applications

Author: Douglas M. Bates

Publisher: Wiley-Interscience

Published: 2007-04-23

Total Pages: 398

ISBN-13:

DOWNLOAD EBOOK

Provides a presentation of the theoretical, practical, and computational aspects of nonlinear regression. There is background material on linear regression, including a geometrical development for linear and nonlinear least squares.


Nonlinear Regression with R

Nonlinear Regression with R

Author: Christian Ritz

Publisher: Springer Science & Business Media

Published: 2008-12-11

Total Pages: 151

ISBN-13: 0387096167

DOWNLOAD EBOOK

- Coherent and unified treatment of nonlinear regression with R. - Example-based approach. - Wide area of application.


Statistical Tools for Nonlinear Regression

Statistical Tools for Nonlinear Regression

Author: Sylvie Huet

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 161

ISBN-13: 147572523X

DOWNLOAD EBOOK

Statistical Tools for Nonlinear Regression presents methods for analyzing data. It has been expanded to include binomial, multinomial and Poisson non-linear models. The examples are analyzed with the free software nls2 updated to deal with the new models included in the second edition. The nls2 package is implemented in S-PLUS and R. Several additional tools are included in the package for calculating confidence regions for functions of parameters or calibration intervals, using classical methodology or bootstrap.


Applied Statistics in Agricultural, Biological, and Environmental Sciences

Applied Statistics in Agricultural, Biological, and Environmental Sciences

Author: Barry Glaz

Publisher: John Wiley & Sons

Published: 2020-01-22

Total Pages: 672

ISBN-13: 0891183590

DOWNLOAD EBOOK

Better experimental design and statistical analysis make for more robust science. A thorough understanding of modern statistical methods can mean the difference between discovering and missing crucial results and conclusions in your research, and can shape the course of your entire research career. With Applied Statistics, Barry Glaz and Kathleen M. Yeater have worked with a team of expert authors to create a comprehensive text for graduate students and practicing scientists in the agricultural, biological, and environmental sciences. The contributors cover fundamental concepts and methodologies of experimental design and analysis, and also delve into advanced statistical topics, all explored by analyzing real agronomic data with practical and creative approaches using available software tools. IN PRESS! This book is being published according to the “Just Published” model, with more chapters to be published online as they are completed.


Nonlinear Statistical Models

Nonlinear Statistical Models

Author: A. Ronald Gallant

Publisher: John Wiley & Sons

Published: 1987-02-04

Total Pages: 632

ISBN-13:

DOWNLOAD EBOOK

Univariate nonlinear regression; Univariate nonlinear regression: special situations; A unified asymptotic theory of nonlinear models with regression structure; Univariate nonlinear regression: asymptotic theory; Multivariate nonlinear regression; Nonlinear simultaneus equations models; A unified asymptotic theory for dynamic nonlinear models.


Asymptotic Theory of Nonlinear Regression

Asymptotic Theory of Nonlinear Regression

Author: A. V. Ivanov

Publisher: Springer

Published: 1997

Total Pages: 344

ISBN-13:

DOWNLOAD EBOOK

This book presents up-to-date mathematical results in asymptotic theory on nonlinear regression on the basis of various asymptotic expansions of least squares, its characteristics, and its distribution functions of functionals of Least Squares Estimator. It is divided into four chapters. In Chapter 1 assertions on the probability of large deviation of normal Least Squares Estimator of regression function parameters are made. Chapter 2 indicates conditions for Least Moduli Estimator asymptotic normality. An asymptotic expansion of Least Squares Estimator as well as its distribution function are obtained and two initial terms of these asymptotic expansions are calculated. Separately, the Berry-Esseen inequality for Least Squares Estimator distribution is deduced. In the third chapter asymptotic expansions related to functionals of Least Squares Estimator are dealt with. Lastly, Chapter 4 offers a comparison of the powers of statistical tests based on Least Squares Estimators. The Appendix gives an overview of subsidiary facts and a list of principal notations. Additional background information, grouped per chapter, is presented in the Commentary section. The volume concludes with an extensive Bibliography. Audience: This book will be of interest to mathematicians and statisticians whose work involves stochastic analysis, probability theory, mathematics of engineering, mathematical modelling, systems theory or cybernetics.


Nonlinear Regression Modeling for Engineering Applications

Nonlinear Regression Modeling for Engineering Applications

Author: R. Russell Rhinehart

Publisher: John Wiley & Sons

Published: 2016-09-26

Total Pages: 402

ISBN-13: 1118597966

DOWNLOAD EBOOK

Since mathematical models express our understanding of how nature behaves, we use them to validate our understanding of the fundamentals about systems (which could be processes, equipment, procedures, devices, or products). Also, when validated, the model is useful for engineering applications related to diagnosis, design, and optimization. First, we postulate a mechanism, then derive a model grounded in that mechanistic understanding. If the model does not fit the data, our understanding of the mechanism was wrong or incomplete. Patterns in the residuals can guide model improvement. Alternately, when the model fits the data, our understanding is sufficient and confidently functional for engineering applications. This book details methods of nonlinear regression, computational algorithms,model validation, interpretation of residuals, and useful experimental design. The focus is on practical applications, with relevant methods supported by fundamental analysis. This book will assist either the academic or industrial practitioner to properly classify the system, choose between the various available modeling options and regression objectives, design experiments to obtain data capturing critical system behaviors, fit the model parameters based on that data, and statistically characterize the resulting model. The author has used the material in the undergraduate unit operations lab course and in advanced control applications.


Bayesian Methods for Nonlinear Classification and Regression

Bayesian Methods for Nonlinear Classification and Regression

Author: David G. T. Denison

Publisher: John Wiley & Sons

Published: 2002-05-06

Total Pages: 302

ISBN-13: 9780471490364

DOWNLOAD EBOOK

Bei der Regressionsanalyse von Datenmaterial erhält man leider selten lineare oder andere einfache Zusammenhänge (parametrische Modelle). Dieses Buch hilft Ihnen, auch komplexere, nichtparametrische Modelle zu verstehen und zu beherrschen. Stärken und Schwächen jedes einzelnen Modells werden durch die Anwendung auf Standarddatensätze demonstriert. Verbreitete nichtparametrische Modelle werden mit Hilfe von Bayes-Verfahren in einen kohärenten wahrscheinlichkeitstheoretischen Zusammenhang gebracht.