Nonlinear Process Control assembles the latest theoretical and practical research on design, analysis and application of nonlinear process control strategies. It presents detailed coverage of all three major elements of nonlinear process control: identification, controller design, and state estimation. Nonlinear Process Control reflects the contributions of eleven leading researchers in the field. It is an ideal textbook for graduate courses in process control, as well as a concise, up-to-date reference for control engineers.
This straightforward text makes the complicated but powerful methods of non-linear control accessible to process engineers. Not only does it cover the necessary mathematics, but it consistently refers to the widely-known finite-dimensional linear time-invariant continuous case as a basis for extension to the nonlinear situation.
Nonlinear Industrial Control Systems presents a range of mostly optimisation-based methods for severely nonlinear systems; it discusses feedforward and feedback control and tracking control systems design. The plant models and design algorithms are provided in a MATLAB® toolbox that enable both academic examples and industrial application studies to be repeated and evaluated, taking into account practical application and implementation problems. The text makes nonlinear control theory accessible to readers having only a background in linear systems, and concentrates on real applications of nonlinear control. It covers: different ways of modelling nonlinear systems including state space, polynomial-based, linear parameter varying, state-dependent and hybrid; design techniques for nonlinear optimal control including generalised-minimum-variance, model predictive control, quadratic-Gaussian, factorised and H∞ design methods; design philosophies that are suitable for aerospace, automotive, marine, process-control, energy systems, robotics, servo systems and manufacturing; steps in design procedures that are illustrated in design studies to define cost-functions and cope with problems such as disturbance rejection, uncertainties and integral wind-up; and baseline non-optimal control techniques such as nonlinear Smith predictors, feedback linearization, sliding mode control and nonlinear PID. Nonlinear Industrial Control Systems is valuable to engineers in industry dealing with actual nonlinear systems. It provides students with a comprehensive range of techniques and examples for solving real nonlinear control design problems.
Dynamic optimization is rocket science – and more. This volume teaches researchers and students alike to harness the modern theory of dynamic optimization to solve practical problems. These problems not only cover those in space flight, but also in emerging social applications such as the control of drugs, corruption, and terror. This volume is designed to be a lively introduction to the mathematics and a bridge to these hot topics in the economics of crime for current scholars. The authors celebrate Pontryagin’s Maximum Principle – that crowning intellectual achievement of human understanding. The rich theory explored here is complemented by numerical methods available through a companion web site.
This book examines control of nonlinear systems. Coverage ranges from mathematical system theory to practical industrial control applications. The author offers web-based videos illustrating some dynamical aspects and case studies in simulation.
This text emphasizes classical methods and presents essential analytical tools and strategies for the construction and development of improved design methods in nonlinear control. It offers engineering procedures for the frequency domain, as well as solved examples for clear understanding of control applications in the industrial, electrical, process, manufacturing, and automotive industries. The authors discuss properties of nonlinear systems, stability, linearization methods, operating modes and dynamic analysis methods, phase trajectories in dynamic analysis of nonlinear systems, and harmonic linearization in dynamic analysis of nonlinear control systems operating in stabilization mode.
The interest in control of nonlinear partial differential equation (PDE) sys tems has been triggered by the need to achieve tight distributed control of transport-reaction processes that exhibit highly nonlinear behavior and strong spatial variations. Drawing from recent advances in dynamics of PDE systems and nonlinear control theory, control of nonlinear PDEs has evolved into a very active research area of systems and control. This book the first of its kind- presents general methods for the synthesis of nonlinear and robust feedback controllers for broad classes of nonlinear PDE sys tems and illustrates their applications to transport-reaction processes of industrial interest. Specifically, our attention focuses on quasi-linear hyperbolic and parabolic PDE systems for which the manipulated inputs and measured and controlled outputs are distributed in space and bounded. We use geometric and Lyapunov-based control techniques to synthesize nonlinear and robust controllers that use a finite number of measurement sensors and control actuators to achieve stabilization of the closed-loop system, output track ing, and attenuation of the effect of model uncertainty. The controllers are successfully applied to numerous convection-reaction and diffusion-reaction processes, including a rapid thermal chemical vapor deposition reactor and a Czochralski crystal growth process. The book includes comparisons of the proposed nonlinear and robust control methods with other approaches and discussions of practical implementation issues.
Systems and control theory has experienced significant development in the past few decades. New techniques have emerged which hold enormous potential for industrial applications, and which have therefore also attracted much interest from academic researchers. However, the impact of these developments on the process industries has been limited.The purpose of Multivariable System Identification for Process Control is to bridge the gap between theory and application, and to provide industrial solutions, based on sound scientific theory, to process identification problems. The book is organized in a reader-friendly way, starting with the simplest methods, and then gradually introducing more complex techniques. Thus, the reader is offered clear physical insight without recourse to large amounts of mathematics. Each method is covered in a single chapter or section, and experimental design is explained before any identification algorithms are discussed. The many simulation examples and industrial case studies demonstrate the power and efficiency of process identification, helping to make the theory more applicable. MatlabTM M-files, designed to help the reader to learn identification in a computing environment, are included.
The increasingly competitive environment within which modern industry has to work means that processes have to be operated over a wider range of conditions in order to meet constantly changing performance targets. Add to this the fact that many industrial operations are nonlinear, and the need for on-line control algorithms for nonlinear processes becomes clear. Major progress has been booked in constrained model-based control and important issues of nonlinear process control have been solved. This text surveys the state-of-the-art in nonlinear model-based control technology, by writers who have actually created the scientific profile. A broad range of issues are covered in depth, from traditional nonlinear approaches to nonlinear model predictive control, from nonlinear process identification and state estimation to control-integrated design. Advances in the control of inverse response and unstable processes are presented. Comparisons with linear control are given, and case studies are used for illustration.
The purpose of this book is to present a self-contained description of the fun damentals of the theory of nonlinear control systems, with special emphasis on the differential geometric approach. The book is intended as a graduate text as weil as a reference to scientists and engineers involved in the analysis and design of feedback systems. The first version of this book was written in 1983, while I was teach ing at the Department of Systems Science and Mathematics at Washington University in St. Louis. This new edition integrates my subsequent teaching experience gained at the University of Illinois in Urbana-Champaign in 1987, at the Carl-Cranz Gesellschaft in Oberpfaffenhofen in 1987, at the University of California in Berkeley in 1988. In addition to a major rearrangement of the last two Chapters of the first version, this new edition incorporates two additional Chapters at a more elementary level and an exposition of some relevant research findings which have occurred since 1985.