Nonlinear Periodic Waves And Their Modulations: An Introductory Course

Nonlinear Periodic Waves And Their Modulations: An Introductory Course

Author: Anatoly M Kamchatnov

Publisher: World Scientific

Published: 2000-09-05

Total Pages: 399

ISBN-13: 9814492434

DOWNLOAD EBOOK

Although the mathematical theory of nonlinear waves and solitons has made great progress, its applications to concrete physical problems are rather poor, especially when compared with the classical theory of linear dispersive waves and nonlinear fluid motion. The Whitham method, which describes the combining action of the dispersive and nonlinear effects as modulations of periodic waves, is not widely used by applied mathematicians and physicists, though it provides a direct and natural way to treat various problems in nonlinear wave theory. Therefore it is topical to describe recent developments of the Whitham theory in a clear and simple form suitable for applications in various branches of physics.This book develops the techniques of the theory of nonlinear periodic waves at elementary level and in great pedagogical detail. It provides an introduction to a Whitham's theory of modulation in a form suitable for applications. The exposition is based on a thorough analysis of representative examples taken from fluid mechanics, nonlinear optics and plasma physics rather than on the formulation and study of a mathematical theory. Much attention is paid to physical motivations of the mathematical methods developed in the book. The main applications considered include the theory of collisionless shock waves in dispersive systems and the nonlinear theory of soliton formation in modulationally unstable systems. Exercises are provided to amplify the discussion of important topics such as singular perturbation theory, Riemann invariants, the finite gap integration method, and Whitham equations and their solutions.


Nonlinear Periodic Waves and Their Modulations

Nonlinear Periodic Waves and Their Modulations

Author: Anatoli? Mikha?lovich Kamchatnov

Publisher: World Scientific

Published: 2000

Total Pages: 399

ISBN-13: 981024407X

DOWNLOAD EBOOK

Although the mathematical theory of nonlinear waves and solitons has made great progress, its applications to concrete physical problems are rather poor, especially when compared with the classical theory of linear dispersive waves and nonlinear fluid motion. The Whitham method, which describes the combining action of the dispersive and nonlinear effects as modulations of periodic waves, is not widely used by applied mathematicians and physicists, though it provides a direct and natural way to treat various problems in nonlinear wave theory. Therefore it is topical to describe recent developments of the Whitham theory in a clear and simple form suitable for applications in various branches of physics.This book develops the techniques of the theory of nonlinear periodic waves at elementary level and in great pedagogical detail. It provides an introduction to a Whitham's theory of modulation in a form suitable for applications. The exposition is based on a thorough analysis of representative examples taken from fluid mechanics, nonlinear optics and plasma physics rather than on the formulation and study of a mathematical theory. Much attention is paid to physical motivations of the mathematical methods developed in the book. The main applications considered include the theory of collisionless shock waves in dispersive systems and the nonlinear theory of soliton formation in modulationally unstable systems. Exercises are provided to amplify the discussion of important topics such as singular perturbation theory, Riemann invariants, the finite gap integration method, and Whitham equations and their solutions.


Symmetry, Phase Modulation and Nonlinear Waves

Symmetry, Phase Modulation and Nonlinear Waves

Author: Thomas J. Bridges

Publisher: Cambridge University Press

Published: 2017-07-03

Total Pages: 239

ISBN-13: 1107188849

DOWNLOAD EBOOK

Bridges studies the origin of Korteweg-de Vries equation using phase modulation and its implications in dynamical systems and nonlinear waves.


Schrödinger Equations in Nonlinear Systems

Schrödinger Equations in Nonlinear Systems

Author: Wu-Ming Liu

Publisher: Springer

Published: 2019-03-20

Total Pages: 576

ISBN-13: 9811365814

DOWNLOAD EBOOK

This book explores the diverse types of Schrödinger equations that appear in nonlinear systems in general, with a specific focus on nonlinear transmission networks and Bose–Einstein Condensates. In the context of nonlinear transmission networks, it employs various methods to rigorously model the phenomena of modulated matter-wave propagation in the network, leading to nonlinear Schrödinger (NLS) equations. Modeling these phenomena is largely based on the reductive perturbation method, and the derived NLS equations are then used to methodically investigate the dynamics of matter-wave solitons in the network. In the context of Bose–Einstein condensates (BECs), the book analyzes the dynamical properties of NLS equations with the external potential of different types, which govern the dynamics of modulated matter-waves in BECs with either two-body interactions or both two- and three-body interatomic interactions. It also discusses the method of investigating both the well-posedness and the ill-posedness of the boundary problem for linear and nonlinear Schrödinger equations and presents new results. Using simple examples, it then illustrates the results on the boundary problems. For both nonlinear transmission networks and Bose–Einstein condensates, the results obtained are supplemented by numerical calculations and presented as figures.


Advances in Mathematics Research

Advances in Mathematics Research

Author: Gabriel Oyibo

Publisher: Nova Publishers

Published: 2003-10-17

Total Pages: 182

ISBN-13: 9781590335185

DOWNLOAD EBOOK

Mathematics has been behind many of humanity's most significant advances in fields as varied as genome sequencing, medical science, space exploration, and computer technology. But those breakthroughs were yesterday. Where will mathematicians lead us tomorrow and can we help shape that destiny? This book assembles carefully selected articles highlighting and explaining cutting-edge research and scholarship in mathematics. Contents: Preface; Solvability of Quasilinear Elliptic Second Order Differential Equations in Rn without Condition at Infinity; Recent Topics on a Class of Nonlinear Integrodifferential Equations of Physical Significance'; Nonparametric Estimation with Censored Observations; Normalisers of Groups Commensurable with PSL2(Z); Spectral Analysis of a Class of Multigroup Neutron Transport Operators in Slab Geometry; Extremum of a Nonlocal Functional Depending on Higher Order Derivatives of the Unknown Function; On Quantum Conditional Probability Spaces; Index.


Rogue and Shock Waves in Nonlinear Dispersive Media

Rogue and Shock Waves in Nonlinear Dispersive Media

Author: Miguel Onorato

Publisher: Springer

Published: 2016-09-19

Total Pages: 376

ISBN-13: 331939214X

DOWNLOAD EBOOK

This self-contained set of lectures addresses a gap in the literature by providing a systematic link between the theoretical foundations of the subject matter and cutting-edge applications in both geophysical fluid dynamics and nonlinear optics. Rogue and shock waves are phenomena that may occur in the propagation of waves in any nonlinear dispersive medium. Accordingly, they have been observed in disparate settings – as ocean waves, in nonlinear optics, in Bose-Einstein condensates, and in plasmas. Rogue and dispersive shock waves are both characterized by the development of extremes: for the former, the wave amplitude becomes unusually large, while for the latter, gradients reach extreme values. Both aspects strongly influence the statistical properties of the wave propagation and are thus considered together here in terms of their underlying theoretical treatment. This book offers a self-contained graduate-level text intended as both an introduction and reference guide for a new generation of scientists working on rogue and shock wave phenomena across a broad range of fields in applied physics and geophysics.


The Ocean in Motion

The Ocean in Motion

Author: Manuel G. Velarde

Publisher: Springer

Published: 2018-03-28

Total Pages: 610

ISBN-13: 3319719343

DOWNLOAD EBOOK

This book commemorates the 70th birthday of Eugene Morozov, the noted Russian observational oceanographer. It contains many contributions reflecting his fields of interest, including but not limited to tidal internal waves, ocean circulation, deep ocean currents, and Arctic oceanography. Special attention is paid to studies on internal waves and especially those on tidal internal waves in the Global Ocean. These papers describe the most important open problems concerning experimental studies of internal waves and their theoretical, numerical, and laboratory modeling. Further contributions investigate the physics of surface waves and their interaction with internal waves. Here, the focus is on describing interaction processes between internal waves and deep currents in the ocean, especially currents of Antarctic Bottom Water in abyssal fractures. They also touch on the problem of oceanic circulation and related processes in fjords, including those occurring under sea ice. Given its breadth of coverage, the book will appeal to anyone interested in a survey of ocean dynamics, ranging from historic perspectives to modern research topics.


Tsunami and Nonlinear Waves

Tsunami and Nonlinear Waves

Author: Anjan Kundu

Publisher: Springer Science & Business Media

Published: 2007-06-19

Total Pages: 319

ISBN-13: 3540712569

DOWNLOAD EBOOK

The need for tsunami research and analysis has grown dramatically following the devastating tsunami of December 2004, which affected Southern Asia. This book pursues a detailed theoretical and mathematical analysis of the fundamentals of tsunamis, especially the evolution and dynamics of tsunamis and other great waves. Of course, it includes specific measurement results from the 2004 tsunami, but the emphasis is on the nature of the waves themselves and their links to nonlinear phenomena.


Nonlinear Waves: Classical and Quantum Aspects

Nonlinear Waves: Classical and Quantum Aspects

Author: Fatkhulla Abdullaev

Publisher: Springer Science & Business Media

Published: 2006-03-02

Total Pages: 563

ISBN-13: 1402021909

DOWNLOAD EBOOK

Leading scientists discuss the most recent physical and experimental results in the physics of Bose-Einstein condensate theory, the theory of nonlinear lattices (including quantum and nonlinear lattices), and nonlinear optics and photonics. Classical and quantum aspects of the dynamics of nonlinear waves are considered. The contributions focus on the Gross-Pitaevskii equation and on the quantum nonlinear Schrödinger equation. Recent experimental results on atomic condensates and hydrogen bonded systems are reviewed. Particular attention is given to nonlinear matter waves in periodic potential.


Shaping Light in Nonlinear Optical Fibers

Shaping Light in Nonlinear Optical Fibers

Author: Sonia Boscolo

Publisher: John Wiley & Sons

Published: 2017-05-30

Total Pages: 486

ISBN-13: 1119088127

DOWNLOAD EBOOK

This book is a contemporary overview of selected topics in fiber optics. It focuses on the latest research results on light wave manipulation using nonlinear optical fibers, with the aim of capturing some of the most innovative developments on this topic. The book’s scope covers both fundamentals and applications from both theoretical and experimental perspectives, with topics including linear and nonlinear effects, pulse propagation phenomena and pulse shaping, solitons and rogue waves, novel optical fibers, supercontinuum generation, polarization management, optical signal processing, fiber lasers, optical wave turbulence, light propagation in disordered fiber media, and slow and fast light. With contributions from leading-edge scientists in the field of nonlinear photonics and fiber optics, they offer an overview of the latest advances in their own research area. The listing of recent research papers at the end of each chapter is useful for researchers using the book as a reference. As the book addresses fundamental and practical photonics problems, it will also be of interest to, and benefit, broader academic communities, including areas such as nonlinear science, applied mathematics and physics, and optical engineering. It offers the reader a wide and critical overview of the state-of-the-art within this practical – as well as fundamentally important and interesting – area of modern science, providing a useful reference which will encourage further research and advances in the field.