The purpose of this book is to report the state-of-the-art of the available and emerging techniques for the determination of extreme responses of a marine structure. This book is intended to be a textbook on the analysis of nonlinear problems generally encountered in an offshore structure design. The book stresses the application of nonlinear theories to practical design problems.
The responses of offshore structures are significantly affected by steep nonlinear waves, currents and wind, leading to phenomena such as springing and ringing of TLPs, slow drift yaw motion of FPSOs and large oscillations of Spar platforms due to vortex shedding. Research has brought about significant progress in this field over the past few decades and introduced us to increasingly involved concepts and their diverse applicability. Thus, an in-depth understanding of steep nonlinear waves and their effects on the responses of offshore structures is essential for safe and effective designs.This book deals with analyses of nonlinear problems encountered in the design of offshore structures, as well as those that are of immediate practical interest to ocean engineers and designers. It presents conclusions drawn from recent research pertinent to nonlinear waves and their effects on the responses of offshore structures. Theories, observations and analyses of laboratory and field experiments are expounded such that the nonlinear effects can be clearly visualized.
The importance of accounting for nonlinear effects in offshore structures has increased due to their higher utilization and extended service lives. This text addresses new methods for advanced analysis of offshore structures developed during the 1990s.
This monograph provides a general background to the modelling of a special class of offshore structures known as compliant structures. External forcing is resisted by buoyancy and tension forces which increase when the structure is slightly offset from its equilibrium. The technical development given in this book is presented in such a way as to highlight the adaptability of the modelling, and the reader is shown how the techniques described can be applied to a variety of different offshore structures.
This report presents reliable techniques for modeling extremely compliant structures. The research focuses on severe geometric nonlinearities associated with very large displacements and rotations. The solution requires two major modeling improvements: formulation of well-conditioned finite elements and development of specific control strategies for nonlinear step-by-step solution. Inherent in the physics of the structure, natural events condition the new finite elements. Associated event control directs the numerical solution to adhere closely to the true nonlinear structural response path. The numerical strategies are a simple extension of the trapezoidal rule for time integration and Newton iteration for nonlinear step-by-step solution. The result is extremely fast, efficient, and stable nonlinear structural simulation. A high level of computational robustness is essential for development of fully nonlinear substructured models. A local/global approach allows each substructure to have its own specialized local submodel and its own associated local solution strategy. A global model then integrates all the super-element representations of each diverse submodel. The local/global framework allows the nonlinear solution strategies to efficiently concentrate computational power where and when needed among the submodels. Code development and test problems focus primarily on compliant marine structures, where the need for robust, highly nonlinear simulation is so great.
* Each chapter is written by one or more invited world-renowned experts * Information provided in handy reference tables and design charts* Numerous examples demonstrate how the theory outlined in the book is applied in the design of structuresTremendous strides have been made in the last decades in the advancement of offshore exploration and production of minerals. This book fills the need for a practical reference work for the state-of-the-art in offshore engineering. All the basic background material and its application in offshore engineering is covered. Particular emphasis is placed in the application of the theory to practical problems. It includes the practical aspects of the offshore structures with handy design guides, simple description of the various components of the offshore engineering and their functions. The primary purpose of the book is to provide the important practical aspects of offshore engineering without going into the nitty-gritty of the actual detailed design.· Provides all the important practical aspects of ocean engineering without going into the 'nitty-gritty' of actual design details·· Simple to use - with handy design guides, references tables and charts·· Numerous examples demonstrate how theory is applied in the design of structures
The handbook contains a comprehensive compilation of topics that are at the forefront of many of the technical advances in ocean waves, coastal, and ocean engineering. More than 110 internationally recognized authorities in the field of coastal and ocean engineering have contributed articles in their areas of expertise to this handbook. These international luminaries are from highly respected universities and renowned research and consulting organizations around the world.
Drawing from experts and top researchers from around the world, this book presents current developments in a variety of areas that impact offshore and ocean engineering.
Dynamics and Control of Mechanical Systems in Offshore Engineering is a comprehensive treatment of marine mechanical systems (MMS) involved in processes of great importance such as oil drilling and mineral recovery. Ranging from nonlinear dynamic modeling and stability analysis of flexible riser systems, through advanced control design for an installation system with a single rigid payload attached by thrusters, to robust adaptive control for mooring systems, it is an authoritative reference on the dynamics and control of MMS. Readers will gain not only a complete picture of MMS at the system level, but also a better understanding of the technical considerations involved and solutions to problems that commonly arise from dealing with them. The text provides: · a complete framework of dynamical analysis and control design for marine mechanical systems; · new results on the dynamical analysis of riser, mooring and installation systems together with a general modeling method for a class of MMS; · a general method and strategy for realizing the control objectives of marine systems with guaranteed stability the effectiveness of which is illustrated by extensive numerical simulation; and · approximation-based control schemes using neural networks for installation of subsea structures with attached thrusters in the presence of time-varying environmental disturbances and parametric uncertainties. Most of the results presented are analytical with repeatable design algorithms with proven closed-loop stability and performance analysis of the proposed controllers is rigorous and detailed. Dynamics and Control of Mechanical Systems in Offshore Engineering is primarily intended for researchers and engineers in the system and control community, but graduate students studying control and marine engineering will also find it a useful resource as will practitioners working on the design, running or maintenance of offshore platforms.
The responses of offshore structures are significantly affected by steep nonlinear waves, currents and wind, leading to phenomena such as springing and ringing of TLPs, slow drift yaw motion of FPSOs and large oscillations of Spar platforms due to vortex shedding. Research has brought about significant progress in this field over the past few decades and introduced us to increasingly involved concepts and their diverse applicability. Thus, an in-depth understanding of steep nonlinear waves and their effects on the responses of offshore structures is essential for safe and effective designs.This book deals with analyses of nonlinear problems encountered in the design of offshore structures, as well as those that are of immediate practical interest to ocean engineers and designers. It presents conclusions drawn from recent research pertinent to nonlinear waves and their effects on the responses of offshore structures. Theories, observations and analyses of laboratory and field experiments are expounded such that the nonlinear effects can be clearly visualized.