Nonlinear Vibration with Control

Nonlinear Vibration with Control

Author: David Wagg

Publisher: Springer

Published: 2014-11-03

Total Pages: 461

ISBN-13: 3319106449

DOWNLOAD EBOOK

This book provides a comprehensive discussion of nonlinear multi-modal structural vibration problems, and shows how vibration suppression can be applied to such systems by considering a sample set of relevant control techniques. It covers the basic principles of nonlinear vibrations that occur in flexible and/or adaptive structures, with an emphasis on engineering analysis and relevant control techniques. Understanding nonlinear vibrations is becoming increasingly important in a range of engineering applications, particularly in the design of flexible structures such as aircraft, satellites, bridges, and sports stadia. There is an increasing trend towards lighter structures, with increased slenderness, often made of new composite materials and requiring some form of deployment and/or active vibration control. There are also applications in the areas of robotics, mechatronics, micro electrical mechanical systems, non-destructive testing and related disciplines such as structural health monitoring. Two broader themes cut across these application areas: (i) vibration suppression – or active damping – and, (ii) adaptive structures and machines. In this expanded 2nd edition, revisions include: An additional section on passive vibration control, including nonlinear vibration mounts. A more in-depth description of semi-active control, including switching and continuous schemes for dampers and other semi-active systems. A complet e reworking of normal form analysis, which now includes new material on internal resonance, bifurcation of backbone curves and stability analysis of forced responses. Further analysis of the nonlinear dynamics of cables including internal resonance leading to whirling. Additional material on the vibration of systems with impact friction. The book is accessible to practitioners in the areas of application, as well as students and researchers working on related topics. In particular, the aim is to introduce the key concepts of nonlinear vibration to readers who have an understanding of linear vibration and/or linear control, but no specialist knowledge in nonlinear dynamics or nonlinear control.


Nonlinear Vibrations and Stability of Shells and Plates

Nonlinear Vibrations and Stability of Shells and Plates

Author: Marco Amabili

Publisher: Cambridge University Press

Published: 2008-01-14

Total Pages: 391

ISBN-13: 1139469029

DOWNLOAD EBOOK

This unique book explores both theoretical and experimental aspects of nonlinear vibrations and stability of shells and plates. It is ideal for researchers, professionals, students, and instructors. Expert researchers will find the most recent progresses in nonlinear vibrations and stability of shells and plates, including advanced problems of shells with fluid-structure interaction. Professionals will find many practical concepts, diagrams, and numerical results, useful for the design of shells and plates made of traditional and advanced materials. They will be able to understand complex phenomena such as dynamic instability, bifurcations, and chaos, without needing an extensive mathematical background. Graduate students will find (i) a complete text on nonlinear mechanics of shells and plates, collecting almost all the available theories in a simple form, (ii) an introduction to nonlinear dynamics, and (iii) the state of art on the nonlinear vibrations and stability of shells and plates, including fluid-structure interaction problems.


Nonlinear Mechanical Vibrations

Nonlinear Mechanical Vibrations

Author: P. Srinivasan

Publisher: John Wiley & Sons

Published: 1995

Total Pages: 308

ISBN-13:

DOWNLOAD EBOOK

Study And Analysis Of Vibrations Have Found Lot Of Importance In Recent Years In Both Academic And Industrial Fields. Nonlinear Vibration In Particular, Has Developed Into A Discipline. The Approach In This Book Is To Highlight And Treat The Essential Aspects Of Nonlinear Vibrations At A Level Useful To Both Students And Practicing Engineers.Design, Development And Utilisation Of Most Active Systems/Equipments (I.E., Those With Movable Parts) Must Address Vibration Impact On Their Performance. Understanding Of Vibration Will Help Minimise The Impact Of Undesirable Vibrations And Use Vibrations To Advantage, Where Possible, Considering Applications Both Commonplace And In Highly Sophisticated Hi-Tech Areas Like Aerospace, Automated/Robot Controlled Production Industries, Etc.This Book Is Written To Convey Succinctly And Clearly The Various Aspects Of Nonlinear Vibrations Through A Judicious Choice Of Text Material, Profusely Illustrating Important Points, And Giving A Mathematical Tinge At A Level Easily Grasped By A Graduate/Undergraduate Student. As All Engineering Ideas Normally Culminate Into A Hardware Hem, This Book Will Serve All Interdisciplinary Fields Of Engineering.


Harmonic Balance for Nonlinear Vibration Problems

Harmonic Balance for Nonlinear Vibration Problems

Author: Malte Krack

Publisher: Springer

Published: 2019-03-23

Total Pages: 167

ISBN-13: 3030140237

DOWNLOAD EBOOK

This monograph presents an introduction to Harmonic Balance for nonlinear vibration problems, covering the theoretical basis, its application to mechanical systems, and its computational implementation. Harmonic Balance is an approximation method for the computation of periodic solutions of nonlinear ordinary and differential-algebraic equations. It outperforms numerical forward integration in terms of computational efficiency often by several orders of magnitude. The method is widely used in the analysis of nonlinear systems, including structures, fluids and electric circuits. The book includes solved exercises which illustrate the advantages of Harmonic Balance over alternative methods as well as its limitations. The target audience primarily comprises graduate and post-graduate students, but the book may also be beneficial for research experts and practitioners in industry.


Modal Analysis of Nonlinear Mechanical Systems

Modal Analysis of Nonlinear Mechanical Systems

Author: Gaetan Kerschen

Publisher: Springer

Published: 2014-10-13

Total Pages: 346

ISBN-13: 3709117917

DOWNLOAD EBOOK

The book first introduces the concept of nonlinear normal modes (NNMs) and their two main definitions. The fundamental differences between classical linear normal modes (LNMs) and NNMs are explained and illustrated using simple examples. Different methods for computing NNMs from a mathematical model are presented. Both advanced analytical and numerical methods are described. Particular attention is devoted to the invariant manifold and normal form theories. The book also discusses nonlinear system identification.


Vibrational Mechanics

Vibrational Mechanics

Author: Iliya I. Blekhman

Publisher: World Scientific

Published: 2000

Total Pages: 544

ISBN-13: 9789810238902

DOWNLOAD EBOOK

"I think this new book has no real competitors. It should be of interest to university teachers and researchers in vibrations and mathematics, industrial vibration specialists and researchers, and university and company bookstores and libraries. It could even make up a textbook for one or more specialized courses in vibrations for graduate and postgraduate university classes".Jon Juel ThomsenTechnical University of Denmark"The monograph is highly descriptive and contains a great many of very vivid schematic diagrams demonstrating the impressive diversity of effects it reflects the author's superiority of understanding of the subject matter and his splendid teaching skills, and it is an outstanding, probably unrivalled work".ZAMM, 2001


Nonlinear Oscillations

Nonlinear Oscillations

Author: Ali H. Nayfeh

Publisher: John Wiley & Sons

Published: 2008-09-26

Total Pages: 720

ISBN-13: 3527617590

DOWNLOAD EBOOK

Nonlinear Oscillations is a self-contained and thorough treatment of the vigorous research that has occurred in nonlinear mechanics since 1970. The book begins with fundamental concepts and techniques of analysis and progresses through recent developments and provides an overview that abstracts and introduces main nonlinear phenomena. It treats systems having a single degree of freedom, introducing basic concepts and analytical methods, and extends concepts and methods to systems having degrees of freedom. Most of this material cannot be found in any other text. Nonlinear Oscillations uses simple physical examples to explain nonlinear dispersive and nondispersive waves. The notation is unified and the analysis modified to conform to discussions. Solutions are worked out in detail for numerous examples, results are plotted and explanations are couched in physical terms. The book contains an extensive bibliography.


Vibrations of Elastic Plates

Vibrations of Elastic Plates

Author: Yi-Yuan Yu

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 234

ISBN-13: 1461223385

DOWNLOAD EBOOK

This book is based on my experiences as a teacher and as a researcher for more than four decades. When I started teaching in the early 1950s, I became interested in the vibrations of plates and shells. Soon after I joined the Polytechnic Institute of Brooklyn as a professor, I began working busily on my research in vibrations of sandwich and layered plates and shells, and then teaching a graduate course on the same subject. Although I tried to put together my lecture notes into a book, I never finished it. Many years later, I came to the New Jersey Institute of Technology as the dean of engineering. When I went back to teaching and looked for some research areas to work on, I came upon laminated composites and piezoelectric layers, which appeared to be natural extensions of sandwiches. Working on these for the last several years has brought me a great deal of joy, since I still am able to find my work relevant. At least I can claim that I still am pursuing life-long learning as it is advocated by educators all over the country. This book is based on the research results I accumulated during these two periods of my work, the first on vibrations and dynamical model ing of sandwiches, and the second on laminated composites and piezoelec tric layers.