Nonlinear Dynamics of the Lithosphere and Earthquake Prediction

Nonlinear Dynamics of the Lithosphere and Earthquake Prediction

Author: Vladimir Keilis-Borok

Publisher: Springer Science & Business Media

Published: 2013-03-14

Total Pages: 348

ISBN-13: 3662052989

DOWNLOAD EBOOK

The vulnerability of our civilization to earthquakes is rapidly growing, rais ing earthquakes to the ranks of major threats faced by humankind. Earth quake prediction is necessary to reduce that threat by undertaking disaster preparedness measures. This is one of the critically urgent problems whose solution requires fundamental research. At the same time, prediction is a ma jor tool of basic science, a source of heuristic constraints and the final test of theories. This volume summarizes the state-of-the-art in earthquake prediction. Its following aspects are considered: - Existing prediction algorithms and the quality of predictions they pro vide. - Application of such predictions for damage reduction, given their current accuracy, so far limited. - Fundamental understanding of the lithosphere gained in earthquake prediction research. - Emerging possibilities for major improvements of earthquake prediction methods. - Potential implications for predicting other disasters, besides earthquakes. Methodologies. At the heart of the research described here is the inte gration of three methodologies: phenomenological analysis of observations; "universal" models of complex systems such as those considered in statistical physics and nonlinear dynamics; and Earth-specific models of tectonic fault networks. In addition, the theory of optimal control is used to link earthquake prediction with earthquake preparedness.


Nonlinear Dynamics in Geosciences

Nonlinear Dynamics in Geosciences

Author: Anastasios A. Tsonis

Publisher: Springer Science & Business Media

Published: 2007-10-23

Total Pages: 603

ISBN-13: 0387349189

DOWNLOAD EBOOK

This work comprises the proceedings of a conference held last year in Rhodes, Greece, to assess developments during the last 20 years in the field of nonlinear dynamics in geosciences. The volume has its own authority as part of the Aegean Conferences cycle, but it also brings together the most up-to-date research from the atmospheric sciences, hydrology, geology, and other areas of geosciences, and discusses the advances made and the future directions of nonlinear dynamics.


Nonlinear Dynamics of Chaotic and Stochastic Systems

Nonlinear Dynamics of Chaotic and Stochastic Systems

Author: Vadim S. Anishchenko

Publisher: Springer Science & Business Media

Published: 2007-07-20

Total Pages: 463

ISBN-13: 3540381686

DOWNLOAD EBOOK

We present an improved and enlarged version of our book Nonlinear - namics of Chaotic and Stochastic Systems published by Springer in 2002. Basically, the new edition of the book corresponds to its ?rst version. While preparingthiseditionwemadesomeclari?cationsinseveralsectionsandalso corrected the misprints noticed in some formulas. Besides, three new sections have been added to Chapter 2. They are “Statistical Properties of Dynamical Chaos,” “E?ects of Synchronization in Extended Self-Sustained Oscillatory Systems,” and “Synchronization in Living Systems.” The sections indicated re?ect the most interesting results obtained by the authors after publication of the ?rst edition. We hope that the new edition of the book will be of great interest for a widesectionofreaderswhoarealreadyspecialistsorthosewhoarebeginning research in the ?elds of nonlinear oscillation and wave theory, dynamical chaos, synchronization, and stochastic process theory. Saratov, Berlin, and St. Louis V.S. Anishchenko November 2006 A.B. Neiman T.E. Vadiavasova V.V. Astakhov L. Schimansky-Geier Preface to the First Edition Thisbookisdevotedtotheclassicalbackgroundandtocontemporaryresults on nonlinear dynamics of deterministic and stochastic systems. Considerable attentionisgiventothee?ectsofnoiseonvariousregimesofdynamicsystems with noise-induced order. On the one hand, there exists a rich literature of excellent books on n- linear dynamics and chaos; on the other hand, there are many marvelous monographs and textbooks on the statistical physics of far-from-equilibrium andstochasticprocesses.Thisbookisanattempttocombinetheapproachof nonlinear dynamics based on the deterministic evolution equations with the approach of statistical physics based on stochastic or kinetic equations. One of our main aims is to show the important role of noise in the organization and properties of dynamic regimes of nonlinear dissipative systems.


Pre-Earthquake Processes

Pre-Earthquake Processes

Author: Dimitar Ouzounov

Publisher: John Wiley & Sons

Published: 2018-07-18

Total Pages: 384

ISBN-13: 1119156939

DOWNLOAD EBOOK

Pre-Earthquake signals are advanced warnings of a larger seismic event. A better understanding of these processes can help to predict the characteristics of the subsequent mainshock. Pre-Earthquake Processes: A Multidisciplinary Approach to Earthquake Prediction Studies presents the latest research on earthquake forecasting and prediction based on observations and physical modeling in China, Greece, Italy, France, Japan, Russia, Taiwan, and the United States. Volume highlights include: Describes the earthquake processes and the observed physical signals that precede them Explores the relationship between pre-earthquake activity and the characteristics of subsequent seismic events Encompasses physical, atmospheric, geochemical, and historical characteristics of pre-earthquakes Illustrates thermal infrared, seismo–ionospheric, and other satellite and ground-based pre-earthquake anomalies Applies these multidisciplinary data to earthquake forecasting and prediction Written for seismologists, geophysicists, geochemists, physical scientists, students and others, Pre-Earthquake Processes: A Multidisciplinary Approach to Earthquake Prediction Studies offers an essential resource for understanding the dynamics of pre-earthquake phenomena from an international and multidisciplinary perspective.


Computational Science and Its Applications – ICCSA 2019

Computational Science and Its Applications – ICCSA 2019

Author: Sanjay Misra

Publisher: Springer

Published: 2019-06-28

Total Pages: 856

ISBN-13: 3030243052

DOWNLOAD EBOOK

The six volumes LNCS 11619-11624 constitute the refereed proceedings of the 19th International Conference on Computational Science and Its Applications, ICCSA 2019, held in Saint Petersburg, Russia, in July 2019. The 64 full papers, 10 short papers and 259 workshop papers presented were carefully reviewed and selected form numerous submissions. The 64 full papers are organized in the following five general tracks: computational methods, algorithms and scientific applications; high performance computing and networks; geometric modeling, graphics and visualization; advanced and emerging applications; and information systems and technologies. The 259 workshop papers were presented at 33 workshops in various areas of computational sciences, ranging from computational science technologies to specific areas of computational sciences, such as software engineering, security, artificial intelligence and blockchain technologies.


Extreme Environmental Events

Extreme Environmental Events

Author: Robert A. Meyers

Publisher: Springer Science & Business Media

Published: 2010-11-03

Total Pages: 1273

ISBN-13: 1441976949

DOWNLOAD EBOOK

Extreme Environmental Events is an authoritative single source for understanding and applying the basic tenets of complexity and systems theory, as well as the tools and measures for analyzing complex systems, to the prediction, monitoring, and evaluation of major natural phenomena affecting life on earth. These phenomena are often highly destructive, and include earthquakes, tsunamis, volcanoes, climate change,, and weather. Early warning, damage, and the immediate response of human populations to these phenomena are also covered from the point of view of complexity and nonlinear systems. In 61 authoritative, state-of-the art articles, world experts in each field apply such tools and concepts as fractals, cellular automata, solitons game theory, network theory, and statistical physics to an understanding of these complex geophysical phenomena.


Earthquake Hazard, Risk and Disasters

Earthquake Hazard, Risk and Disasters

Author: Rasoul Sorkhabi

Publisher: Academic Press

Published: 2014-06-16

Total Pages: 607

ISBN-13: 0123964725

DOWNLOAD EBOOK

Earthquake Hazard, Risk, and Disasters presents the latest scientific developments and reviews of research addressing seismic hazard and seismic risk, including causality rates, impacts on society, preparedness, insurance and mitigation. The current controversies in seismic hazard assessment and earthquake prediction are addressed from different points of view. Basic tools for understanding the seismic risk and to reduce it, like paleoseismology, remote sensing, and engineering are discussed. - Contains contributions from expert seismologists, geologists, engineers and geophysicists selected by a world-renowned editorial board - Presents the latest research on seismic hazard and risk assessment, economic impacts, fatality rates, and earthquake preparedness and mitigation - Includes numerous illustrations, maps, diagrams and tables addressing earthquake risk reduction - Features new insights and reviews of earthquake prediction, forecasting and early warning, as well as basic tools to deal with earthquake risk


Computational Earthquake Physics: Simulations, Analysis and Infrastructure

Computational Earthquake Physics: Simulations, Analysis and Infrastructure

Author: Xiang-chu Yin

Publisher: Springer Science & Business Media

Published: 2007-02-16

Total Pages: 330

ISBN-13: 3764381302

DOWNLOAD EBOOK

This second part of a two-volume work contains 22 research articles on various aspects of computational earthquake physics. Coverage includes the promising earthquake forecasting model LURR (Load-Unload Response Ratio); pattern informatics and phase dynamics and their applications; computational algorithms, including continuum damage models and visualization and analysis of geophysical datasets; and assimilation of data.


Earthquakes and Sustainable Infrastructure

Earthquakes and Sustainable Infrastructure

Author: Giuliano Panza

Publisher: Elsevier

Published: 2021-05-21

Total Pages: 676

ISBN-13: 0128235411

DOWNLOAD EBOOK

Earthquakes and Sustainable Infrastructure: Neodeterministic (NDSHA) Approach Guarantees Prevention Rather Than Cure communicates in one comprehensive volume the state-of-the-art scientific knowledge on earthquakes and related risks. Earthquakes occur in a seemingly random way and, in some cases, it is possible to trace seismicity back to the concept of deterministic chaos. Therefore, seismicity can be explained by a deterministic mechanism that arises as a result of various convection movements in the Earth's mantle, expressed in the modern movement of lithospheric plates fueled by tidal forces. Consequently, to move from a perspective focused on the response to emergencies to a new perspective based on prevention and sustainability, it is necessary to follow this neodeterministic approach (NDSHA) to guarantee prevention, saving lives and infrastructure. This book describes in a complete and consistent way an effective explanation to complex structures, systems, and components, and prescribes solutions to practical challenges. It reflects the scientific novelty and promises a feasible, workable, theoretical and applicative attitude. Earthquakes and Sustainable Infrastructure serves a "commentary role for developers and designers of critical infrastructure and unique installations. Commentary-like roles follow standard, where there is no standard. Mega-installations embody/potentiate risks; nonetheless, lack a comprehensive classic standard. Every compound is unique, one of its kind, and differs from others even of similar function. There is no justification to elaborate a common standard for unique entities. On the other hand, these specific installations, for example, NPPs, Naval Ports, Suez Canal, HazMat production sites, and nuclear waste deposits, impose security and safety challenges to people and the environment. The book offers a benchmark for entrepreneurs, designers, constructors, and operators on how to compile diverse relevant information on site-effects and integrate it into the best-educated guess to keep safe and secure, people and environment. The authors are eager to convey the entire information and explanations to our readers, without missing either accurate information or explanations. That is achieved by "miniaturization, as much is possible, not minimization. So far, the neodeterministic method has been successfully applied in numerous metropolitan areas and regions such as Delhi (India), Beijing (China), Naples (Italy), Algiers (Algeria), Cairo (Egypt), Santiago de Cuba (Cuba), Thessaloniki (Greece), South-East Asia (2004), Tohoku, Japan (2011), Albania (2019), Bangladesh, Iran, Sumatra, Ecuador, and elsewhere. Earthquakes and Sustainable Infrastructure includes case studies from these areas, as well as suggested applications to other seismically active areas around the globe. NDSHA approaches confirm/validate that science is looming to warn. Concurrently, leaders and practitioners have to learn to use rectified science in favor of peoples' safety. State-of-the-art science does have the know-how to reduce casualties and structural damage from potential catastrophes to a bearable incident. - The only book to cover earthquake prediction and preparation from a neo-deterministic (NDSHA) approach - Includes case studies from metropolitan areas where the neo-deterministic method has been successfully applied - Editors and authors include top experts in academia, disaster prevention, and preparedness management