Nonlinear Dynamics of Active and Passive Systems of Vibration Protection

Nonlinear Dynamics of Active and Passive Systems of Vibration Protection

Author: Michail Z. Kolovsky

Publisher: Springer Science & Business Media

Published: 2013-06-05

Total Pages: 424

ISBN-13: 3540491430

DOWNLOAD EBOOK

With progress in technology, the problem of protecting human-beings, ma chines and technological processes from !>Ources of vibration and impact has become of utmost importance. Traditional "classical" methods of pro tection, based upon utilising elastic passive and dissipative elements, turn out to be inefficient in many situations and can not completely satisfy the complex and often contradictory claims imposed on modern vibration protection systems which must provide high performance at minimum di mensions. For these reasons, active vibration protection systems, which are actually systems of automatic control with independent power sources, are widely used nowadays. Appearing and developing active systems require that traditional ap proaches to the analysis and synthesis of vibration protection systems must be revised. Firstly, there exists the necessity to re-state the problem of vi bration protection from mechanical actions as an equivalent problem in closed-loop control systems design, which is to be solved by the methods of control theory. Furthermore, it turns out that certain inherent proper ties of active systems must be taken into account for a proper design. In the majority of cases, the dynamic models of the objects to be protected and the bases to which these objects are to be attached must be revised. They are no longer considered as rigid bodies but elastic bodies with weak dissipation.


Nonlinear Vibration with Control

Nonlinear Vibration with Control

Author: David Wagg

Publisher: Springer

Published: 2014-11-03

Total Pages: 461

ISBN-13: 3319106449

DOWNLOAD EBOOK

This book provides a comprehensive discussion of nonlinear multi-modal structural vibration problems, and shows how vibration suppression can be applied to such systems by considering a sample set of relevant control techniques. It covers the basic principles of nonlinear vibrations that occur in flexible and/or adaptive structures, with an emphasis on engineering analysis and relevant control techniques. Understanding nonlinear vibrations is becoming increasingly important in a range of engineering applications, particularly in the design of flexible structures such as aircraft, satellites, bridges, and sports stadia. There is an increasing trend towards lighter structures, with increased slenderness, often made of new composite materials and requiring some form of deployment and/or active vibration control. There are also applications in the areas of robotics, mechatronics, micro electrical mechanical systems, non-destructive testing and related disciplines such as structural health monitoring. Two broader themes cut across these application areas: (i) vibration suppression – or active damping – and, (ii) adaptive structures and machines. In this expanded 2nd edition, revisions include: An additional section on passive vibration control, including nonlinear vibration mounts. A more in-depth description of semi-active control, including switching and continuous schemes for dampers and other semi-active systems. A complet e reworking of normal form analysis, which now includes new material on internal resonance, bifurcation of backbone curves and stability analysis of forced responses. Further analysis of the nonlinear dynamics of cables including internal resonance leading to whirling. Additional material on the vibration of systems with impact friction. The book is accessible to practitioners in the areas of application, as well as students and researchers working on related topics. In particular, the aim is to introduce the key concepts of nonlinear vibration to readers who have an understanding of linear vibration and/or linear control, but no specialist knowledge in nonlinear dynamics or nonlinear control.


Nonlinear Dynamics, Volume 1

Nonlinear Dynamics, Volume 1

Author: Gaetan Kerschen

Publisher: Springer

Published: 2017-05-03

Total Pages: 220

ISBN-13: 3319544047

DOWNLOAD EBOOK

Nonlinear Dynamics, Volume 1: Proceedings of the 35th IMAC, A Conference and Exposition on Structural Dynamics, 2017, the first volume of ten from the Conference brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Nonlinear Dynamics, including papers on: Nonlinear System Identification Nonlinear Modeling & Simulation Nonlinear Reduced-order Modeling Nonlinearity in Practice Nonlinearity in Aerospace Systems Nonlinearity in Multi-Physics Systems Nonlinear Modes and Modal Interactions Experimental Nonlinear Dynamics


Advances in Applied Nonlinear Dynamics, Vibration and Control -2021

Advances in Applied Nonlinear Dynamics, Vibration and Control -2021

Author: Xingjian Jing

Publisher: Springer Nature

Published: 2021-09-23

Total Pages: 1210

ISBN-13: 9811659125

DOWNLOAD EBOOK

This book is to provide readers with up-to-date advances in applied and interdisciplinary engineering science and technologies related to nonlinear dynamics, vibration, control, robotics, and their engineering applications, developed in the most recent years. All the contributed chapters come from active scholars in the area, which cover advanced theory & methods, innovative technologies, benchmark experimental validations and engineering practices. Readers would benefit from this state-of-the-art collection of applied nonlinear dynamics, in-depth vibration engineering theory, cutting-edge control methods and technologies, and definitely find stimulating ideas for their on-going R&D work. This book is intended for graduate students, research staff and scholars in academics, and also provides useful hand-up guidance for professional and engineers in practical engineering missions.


Theory of Vibration Protection

Theory of Vibration Protection

Author: Igor A. Karnovsky

Publisher: Springer

Published: 2016-05-09

Total Pages: 708

ISBN-13: 3319280201

DOWNLOAD EBOOK

This text is an advancement of the theory of vibration protection of mechanical systems with lumped and distributed parameters. The book offers various concepts and methods of solving vibration protection problems, discusses the advantages and disadvantages of different methods, and the fields of their effective applications. Fundamental approaches of vibration protection, which are considered in this book, are the passive, parametric and optimal active vibration protection. The passive vibration protection is based on vibration isolation, vibration damping and dynamic absorbers. Parametric vibration protection theory is based on the Shchipanov-Luzin invariance principle. Optimal active vibration protection theory is based on the Pontryagin principle and the Krein moment method. The book also contains special topics such as suppression of vibrations at the source of their occurrence and the harmful influence of vibrations on humans.“p> Numerous examples, which illustrate the theoretical ideas of each chapter, are included. This book is intended for graduate students and engineers. It is assumed that a reader has working knowledge of theory of vibrations, differential equations, andcomplex analysis. About the Authors. Igor A Karnovsky, Ph.D., Dr. Sci., is a specialist in structural analysis, theory of vibration and optimal control of vibration. He has 40 years of experience in research, teaching and consulting in this field, and is the author of more than 70 published scientific papers, including two books in Structural Analysis (published with Springer in 2010-2012) and three handbooks in Structural Dynamics (published with McGraw Hill in 2001-2004). He also holds a number of vibration-control-related patents. Evgeniy Lebed, Ph.D., is a specialist in applied mathematics and engineering. He has 10 years of experience in research, teaching and consulting in this field. The main sphere of his research interests are qualitative theory of differential equations, integral transforms and frequency-domain analysis with application to image and signal processing. He is the author of 15 published scientific papers and a US patent (2015).


INTELLIGENCE FOR NONLINEAR DYNAMICS AND SYNCHRONISATION

INTELLIGENCE FOR NONLINEAR DYNAMICS AND SYNCHRONISATION

Author: Abdelhamid Bouchachia

Publisher: Springer Science & Business Media

Published: 2010-09-01

Total Pages: 313

ISBN-13: 9491216309

DOWNLOAD EBOOK

Over the past years, the appropriateness of Computational Intelligence (CI) techniques in modeling and optimization tasks pertaining to complex nonlinear dynamic systems has become indubitable, as attested by a large number of studies reporting on the successful application of CI models in nonlinear science (for example, adaptive control, signal processing, medical diagnostic, pattern formation, living systems, etc.). This volume summarizes the state-of-the-art of CI in the context of nonlinear dynamic systems and synchronization. Aiming at fostering new breakthroughs, the chapters in the book focus on theoretical, experimental and computational aspects of recent advances in nonlinear science intertwined with computational intelligence techniques. In addition, all the chapters have a tutorial-oriented structure.


Dynamics and Control of Machines

Dynamics and Control of Machines

Author: V.K. Astashev

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 242

ISBN-13: 3540696342

DOWNLOAD EBOOK

Basic models and concepts of machine dynamics and motion control are presented in the order of the principal steps of machine design. The machine is treated as a coupled dynamical system, including drive, mechanisms and controller, to reveal its behavior at different regimes through the interaction of its units under dynamic and processing loads. The main dynamic effects in machines are explained. The influence of component compliances on accuracy, stability and efficiency of the machines is analyzed. Methods for decreasing internal and external vibration activity of machines are described. The dynamic features of digital control are considered. Special attention is given to machines with intense dynamic behavior: resonant and hand-held percussion ones. Targeted to engineers as well as to lecturers and advanced students.


Topics in Nonlinear Dynamics, Volume 3

Topics in Nonlinear Dynamics, Volume 3

Author: D. Adams

Publisher: Springer Science & Business Media

Published: 2012-04-11

Total Pages: 330

ISBN-13: 146142416X

DOWNLOAD EBOOK

Topics in Nonlinear Dynamics, Volume 3, Proceedings of the 30th IMAC, A Conference and Exposition on Structural Dynamics, 2012, the third volume of six from the Conference, brings together 26 contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Structural Dynamics, including papers on: Application of Nonlinearities: Aerospace Structures Nonlinear Dynamics Effects Under Shock Loading Application of Nonlinearities: Vibration Reduction Nonlinear Dynamics: Testing Nonlinear Dynamics: Simulation Nonlinear Dynamics: Identification Nonlinear Dynamics: Localization