This book provides a detailed survey of the methods that were recently developed to handle advanced versions of the blind source separation problem, which involve several types of nonlinear mixtures. Another attractive feature of the book is that it is based on a coherent framework. More precisely, the authors first present a general procedure for developing blind source separation methods. Then, all reported methods are defined with respect to this procedure. This allows the reader not only to more easily follow the description of each method but also to see how these methods relate to one another. The coherence of this book also results from the fact that the same notations are used throughout the chapters for the quantities (source signals and so on) that are used in various methods. Finally, among the quite varied types of processing methods that are presented in this book, a significant part of this description is dedicated to methods based on artificial neural networks, especially recurrent ones, which are currently of high interest to the data analysis and machine learning community in general, beyond the more specific signal processing and blind source separation communities.
This book provides a detailed survey of the methods that were recently developed to handle advanced versions of the blind source separation problem, which involve several types of nonlinear mixtures. Another attractive feature of the book is that it is based on a coherent framework. More precisely, the authors first present a general procedure for developing blind source separation methods. Then, all reported methods are defined with respect to this procedure. This allows the reader not only to more easily follow the description of each method but also to see how these methods relate to one another. The coherence of this book also results from the fact that the same notations are used throughout the chapters for the quantities (source signals and so on) that are used in various methods. Finally, among the quite varied types of processing methods that are presented in this book, a significant part of this description is dedicated to methods based on artificial neural networks, especially recurrent ones, which are currently of high interest to the data analysis and machine learning community in general, beyond the more specific signal processing and blind source separation communities. Presents advanced configurations of the blind source separation problem, involving bilinear, linear-quadratic and polynomial mixing models; Provides a detailed and coherent description of the methods reported in the literature for handling these types of mixing phenomena; Focuses on complex configurations involving nonlinear mixing transforms.
Blind Source Separation intends to report the new results of the efforts on the study of Blind Source Separation (BSS). The book collects novel research ideas and some training in BSS, independent component analysis (ICA), artificial intelligence and signal processing applications. Furthermore, the research results previously scattered in many journals and conferences worldwide are methodically edited and presented in a unified form. The book is likely to be of interest to university researchers, R&D engineers and graduate students in computer science and electronics who wish to learn the core principles, methods, algorithms and applications of BSS. Dr. Ganesh R. Naik works at University of Technology, Sydney, Australia; Dr. Wenwu Wang works at University of Surrey, UK.
Edited by the people who were forerunners in creating the field, together with contributions from 34 leading international experts, this handbook provides the definitive reference on Blind Source Separation, giving a broad and comprehensive description of all the core principles and methods, numerical algorithms and major applications in the fields of telecommunications, biomedical engineering and audio, acoustic and speech processing. Going beyond a machine learning perspective, the book reflects recent results in signal processing and numerical analysis, and includes topics such as optimization criteria, mathematical tools, the design of numerical algorithms, convolutive mixtures, and time frequency approaches. This Handbook is an ideal reference for university researchers, R&D engineers and graduates wishing to learn the core principles, methods, algorithms, and applications of Blind Source Separation. - Covers the principles and major techniques and methods in one book - Edited by the pioneers in the field with contributions from 34 of the world's experts - Describes the main existing numerical algorithms and gives practical advice on their design - Covers the latest cutting edge topics: second order methods; algebraic identification of under-determined mixtures, time-frequency methods, Bayesian approaches, blind identification under non negativity approaches, semi-blind methods for communications - Shows the applications of the methods to key application areas such as telecommunications, biomedical engineering, speech, acoustic, audio and music processing, while also giving a general method for developing applications
This is the world’s first edited book on independent component analysis (ICA)-based blind source separation (BSS) of convolutive mixtures of speech. This book brings together a small number of leading researchers to provide tutorial-like and in-depth treatment on major ICA-based BSS topics, with the objective of becoming the definitive source for current, comprehensive, authoritative, and yet accessible treatment.
Audio Signal Processing for Next-Generation Multimedia Communication Systems presents cutting-edge digital signal processing theory and implementation techniques for problems including speech acquisition and enhancement using microphone arrays, new adaptive filtering algorithms, multichannel acoustic echo cancellation, sound source tracking and separation, audio coding, and realistic sound stage reproduction. This book's focus is almost exclusively on the processing, transmission, and presentation of audio and acoustic signals in multimedia communications for telecollaboration where immersive acoustics will play a great role in the near future.
In many situations found both in Nature and in human-built systems, a set of mixed signals is observed (frequently also with noise), and it is of great scientific and technological relevance to be able to isolate or separate them so that the information in each of the signals can be utilized. Blind source separation (BSS) research is one of the more interesting emerging fields now a days in the field of signal processing. It deals with the algorithms that allow the recovery of the original sources from a set of mixtures only. The adjective "blind" is applied because the purpose is to estimate the original sources without any a priori knowledge about either the sources or the mixing system. Most of the models employed in BSS assume the hypothesis about the independence of the original sources. Under this hypothesis, a BSS problem can be considered as a particular case of independent component analysis(ICA), a linear transformation technique that, starting from a multivariate representation of the data, minimizes the statistical dependence between the components of the representation. It can be claimed that most of the advances in ICA have been motivated by the search for solutions to the BSS problem and, the other way around, advances in ICA have been immediately applied to BSS. ICA and BSS algorithms start from a mixture model, whose parameters are estimated from the observed mixtures. Separation is achieved by applying the inverse mixture model to the observed signals(separating or unmixing model). Mixturem- els usually fall into three broad categories: instantaneous linear models, convolutive models and nonlinear models, the?rstone being the simplest but, in general, not near realistic applications. The development and test of the algorithms can be accomplished through synthetic data or with real-world data. Obviously, the most important aim(and most difficult) is the separation of real-world mixtures. BSS and ICA have strong relations also, apart from signal processing, with other fields such as statistics and artificial neural networks. As long as we can find a system that emits signals propagated through a mean, andthosesignalsarereceivedbyasetofsensorsandthereisaninterestinrecovering the original sources, we have a potential field of application for BSS and ICA. Inside that wide range of applications we can find, for instance: noise reduction applications, biomedical applications, audio systems, telecommunications, and many others. This volume comes out just 20 years after the first contributions in ICA and BSS 1 appeared . Therein after, the number of research groups working in ICA and BSS has been constantly growing, so that nowadays we can estimate that far more than 100 groups are researching in these fields. As proof of the recognition among the scientific community of ICA and BSS developments there have been numerous special sessions and special issues in several well- 1 J. Herault, B. Ans, "Circuits neuronaux à synapses modi?ables: décodage de messages composites para apprentissage non supervise", C.R. de l'Académie des Sciences, vol. 299, no. III-13,pp.525-528,1984
This book constitutes the refereed proceedings of the 7th International Conference on Independent Component Analysis and Blind Source Separation, ICA 2007, held in London, UK, in September 2007. It covers algorithms and architectures, applications, medical applications, speech and signal processing, theory, and visual and sensory processing.
A systematic exploration of both classic and contemporary algorithms in blind source separation with practical case studies The book presents an overview of Blind Source Separation, a relatively new signal processing method. Due to the multidisciplinary nature of the subject, the book has been written so as to appeal to an audience from very different backgrounds. Basic mathematical skills (e.g. on matrix algebra and foundations of probability theory) are essential in order to understand the algorithms, although the book is written in an introductory, accessible style. This book offers a general overview of the basics of Blind Source Separation, important solutions and algorithms, and in-depth coverage of applications in image feature extraction, remote sensing image fusion, mixed-pixel decomposition of SAR images, image object recognition fMRI medical image processing, geochemical and geophysical data mining, mineral resources prediction and geoanomalies information recognition. Firstly, the background and theory basics of blind source separation are introduced, which provides the foundation for the following work. Matrix operation, foundations of probability theory and information theory basics are included here. There follows the fundamental mathematical model and fairly new but relatively established blind source separation algorithms, such as Independent Component Analysis (ICA) and its improved algorithms (Fast ICA, Maximum Likelihood ICA, Overcomplete ICA, Kernel ICA, Flexible ICA, Non-negative ICA, Constrained ICA, Optimised ICA). The last part of the book considers the very recent algorithms in BSS e.g. Sparse Component Analysis (SCA) and Non-negative Matrix Factorization (NMF). Meanwhile, in-depth cases are presented for each algorithm in order to help the reader understand the algorithm and its application field. A systematic exploration of both classic and contemporary algorithms in blind source separation with practical case studies Presents new improved algorithms aimed at different applications, such as image feature extraction, remote sensing image fusion, mixed-pixel decomposition of SAR images, image object recognition, and MRI medical image processing With applications in geochemical and geophysical data mining, mineral resources prediction and geoanomalies information recognition Written by an expert team with accredited innovations in blind source separation and its applications in natural science Accompanying website includes a software system providing codes for most of the algorithms mentioned in the book, enhancing the learning experience Essential reading for postgraduate students and researchers engaged in the area of signal processing, data mining, image processing and recognition, information, geosciences, life sciences.
Im Mittelpunkt dieses modernen und spezialisierten Bandes stehen adaptive Strukturen und unüberwachte Lernalgorithmen, besonders im Hinblick auf effektive Computersimulationsprogramme. Anschauliche Illustrationen und viele Beispiele sowie eine interaktive CD-ROM ergänzen den Text.