Quantum Gases

Quantum Gases

Author: Nick Proukakis

Publisher: World Scientific

Published: 2013

Total Pages: 579

ISBN-13: 1848168128

DOWNLOAD EBOOK

This volume provides a broad overview of the principal theoretical techniques applied to non-equilibrium and finite temperature quantum gases. Covering Bose-Einstein condensates, degenerate Fermi gases, and the more recently realised exciton-polariton condensates, it fills a gap by linking between different methods with origins in condensed matter physics, quantum field theory, quantum optics, atomic physics, and statistical mechanics.


Linear infinite-particle operators

Linear infinite-particle operators

Author: V. A. Malyshev Robert Adol_fovich Minlos

Publisher: American Mathematical Soc.

Published: 1995-02-13

Total Pages: 314

ISBN-13: 9780821897607

DOWNLOAD EBOOK

The main subject of this book can be viewed in various ways. From the standpoint of functional analysis, it studies spectral properties of a certain class of linear operators; from the viewpoint of probability theory, it is concerned with the analysis of singular Markov processes; and, from the vantage point of mathematical physics, it analyzes the dynamics of equilibrium systems in quantum statistical physics and quantum field theory. Malyshev and Minlos describe two new approaches to the subject which have not been previously treated in monograph form. They also present background material which makes the book accessible and useful to researchers and graduate students working in functional analysis, probability theory, and mathematical physics.


Quantum Gases: Finite Temperature And Non-equilibrium Dynamics

Quantum Gases: Finite Temperature And Non-equilibrium Dynamics

Author: Nick P Proukakis

Publisher: World Scientific

Published: 2013-02-21

Total Pages: 579

ISBN-13: 1908979704

DOWNLOAD EBOOK

The 1995 observation of Bose-Einstein condensation in dilute atomic vapours spawned the field of ultracold, degenerate quantum gases. Unprecedented developments in experimental design and precision control have led to quantum gases becoming the preferred playground for designer quantum many-body systems.This self-contained volume provides a broad overview of the principal theoretical techniques applied to non-equilibrium and finite temperature quantum gases. Covering Bose-Einstein condensates, degenerate Fermi gases, and the more recently realised exciton-polariton condensates, it fills a gap by linking between different methods with origins in condensed matter physics, quantum field theory, quantum optics, atomic physics, and statistical mechanics. Thematically organised chapters on different methodologies, contributed by key researchers using a unified notation, provide the first integrated view of the relative merits of individual approaches, aided by pertinent introductory chapters and the guidance of editorial notes.Both graduate students and established researchers wishing to understand the state of the art will greatly benefit from this comprehensive and up-to-date review of non-equilibrium and finite temperature techniques in the exciting and expanding field of quantum gases and liquids./a


Equilibrium and Nonequilibrium Aspects of Phase Transitions in Quantum Physics

Equilibrium and Nonequilibrium Aspects of Phase Transitions in Quantum Physics

Author: Ricardo Puebla

Publisher: Springer

Published: 2018-09-17

Total Pages: 216

ISBN-13: 3030006530

DOWNLOAD EBOOK

In this book, the equilibrium and nonequilibrium properties of continuous phase transitions are studied in various systems, with a special emphasis on understanding how well-established universal traits at equilibrium may be extended into the dynamic realm, going beyond the paradigmatic Kibble–Zurek mechanism of defect formation. This book reports on the existence of a quantum phase transition in a system comprising just a single spin and a bosonic mode (the quantum Rabi model). Though critical phenomena are inherent to many-body physics, the author demonstrates that this small and ostensibly simple system allows us to explore the rich phenomenology of phase transitions, both in- and out-of-equilibrium. Moreover, the universal traits of this quantum phase transition may be realized in a single trapped-ion experiment, thus avoiding the need to scale up the number of constituents. In this system, the phase transition takes place in a suitable limit of system parameters rather than in the conventional thermodynamic limit – a novel notion that the author and his collaborators have dubbed the finite-component system phase transition. As such, the results gathered in this book will open promising new avenues in our understanding and exploration of quantum critical phenomena.


Dynamical Systems, Ergodic Theory and Applications

Dynamical Systems, Ergodic Theory and Applications

Author: L.A. Bunimovich

Publisher: Springer Science & Business Media

Published: 2000-04-05

Total Pages: 476

ISBN-13: 9783540663164

DOWNLOAD EBOOK

This EMS volume, the first edition of which was published as Dynamical Systems II, EMS 2, familiarizes the reader with the fundamental ideas and results of modern ergodic theory and its applications to dynamical systems and statistical mechanics. The enlarged and revised second edition adds two new contributions on ergodic theory of flows on homogeneous manifolds and on methods of algebraic geometry in the theory of interval exchange transformations.


Dynamics: Models and Kinetic Methods for Non-equilibrium Many Body Systems

Dynamics: Models and Kinetic Methods for Non-equilibrium Many Body Systems

Author: John Karkheck

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 512

ISBN-13: 940114365X

DOWNLOAD EBOOK

Recent years have witnessed a resurgence in the kinetic approach to dynamic many-body problems. Modern kinetic theory offers a unifying theoretical framework within which a great variety of seemingly unrelated systems can be explored in a coherent way. Kinetic methods are currently being applied in such areas as the dynamics of colloidal suspensions, granular material flow, electron transport in mesoscopic systems, the calculation of Lyapunov exponents and other properties of classical many-body systems characterised by chaotic behaviour. The present work focuses on Brownian motion, dynamical systems, granular flows, and quantum kinetic theory.


Mathematical Foundations of Classical Statistical Mechanics

Mathematical Foundations of Classical Statistical Mechanics

Author: Dmitriĭ I︠A︡kovlevich Petrina

Publisher: CRC Press

Published: 1989

Total Pages: 362

ISBN-13: 9782881246814

DOWNLOAD EBOOK

Introducing the functional method practiced in the USSR, this well- translated monograph considers the problem of investigating systems of infinite numbers of particles. It discusses the equilibrium and non- equilibrium states of infinite classical statistical systems, and investigates the thermodynamic limit for non-equilibrium systems and of the states of infinite systems, for which thermodynamic equivalence is proved. Book club price, $95. Annotation copyrighted by Book News, Inc., Portland, OR


Solvable One-Dimensional Multi-State Models for Statistical and Quantum Mechanics

Solvable One-Dimensional Multi-State Models for Statistical and Quantum Mechanics

Author: Rajendran Saravanan

Publisher: Springer Nature

Published: 2021-11-14

Total Pages: 186

ISBN-13: 9811666547

DOWNLOAD EBOOK

This book highlights the need for studying multi-state models analytically for understanding the physics of molecular processes. An intuitive picture about recently solved models of statistical and quantum mechanics is drawn along with presenting the methods developed to solve them. The models are relevant in the context of molecular processes taking place in gaseous phases and condensed phases, emphasized in the introduction. Chapter 1 derives the arisal of multi-state models for molecular processes from the full Hamiltonian description. The model equations are introduced and the literature review presented in short. In Chapter 2, the time-domain methods to solve Smoluchowski-based reaction-diffusion systems with single-state and two-state descriptions are discussed. Their corresponding analytical results derive new equilibrium concepts in reversible reactions and studies the effect of system and molecular parameters in condensed-phase chemical dynamics. In Chapter 3, time-domain methods to solve quantum scattering problems are developed. Along side introducing a brand new solvable model in quantum scattering, it discusses transient features of quantum two-state models. In interest with electronic transitions, a new solvable two-state model with localized non-adiabatic coupling is also presented. The book concludes by proposing the future scope of the model, thereby inviting new research in this fundamentally important and rich applicable field.​


Modelling Non-Markovian Quantum Systems Using Tensor Networks

Modelling Non-Markovian Quantum Systems Using Tensor Networks

Author: Aidan Strathearn

Publisher: Springer Nature

Published: 2020-08-31

Total Pages: 113

ISBN-13: 3030549755

DOWNLOAD EBOOK

This thesis presents a revolutionary technique for modelling the dynamics of a quantum system that is strongly coupled to its immediate environment. This is a challenging but timely problem. In particular it is relevant for modelling decoherence in devices such as quantum information processors, and how quantum information moves between spatially separated parts of a quantum system. The key feature of this work is a novel way to represent the dynamics of general open quantum systems as tensor networks, a result which has connections with the Feynman operator calculus and process tensor approaches to quantum mechanics. The tensor network methodology developed here has proven to be extremely powerful: For many situations it may be the most efficient way of calculating open quantum dynamics. This work is abounds with new ideas and invention, and is likely to have a very significant impact on future generations of physicists.


Strongly Interacting Quantum Systems out of Equilibrium

Strongly Interacting Quantum Systems out of Equilibrium

Author: Thierry Giamarchi

Publisher: Oxford University Press

Published: 2016-07-07

Total Pages: 464

ISBN-13: 0191080543

DOWNLOAD EBOOK

Over the last decade new experimental tools and theoretical concepts are providing new insights into collective nonequilibrium behavior of quantum systems. The exquisite control provided by laser trapping and cooling techniques allows us to observe the behavior of condensed bose and degenerate Fermi gases under nonequilibrium drive or after `quenches' in which a Hamiltonian parameter is suddenly or slowly changed. On the solid state front, high intensity short-time pulses and fast (femtosecond) probes allow solids to be put into highly excited states and probed before relaxation and dissipation occur. Experimental developments are matched by progress in theoretical techniques ranging from exact solutions of strongly interacting nonequilibrium models to new approaches to nonequilibrium numerics. The summer school `Strongly interacting quantum systems out of equilibrium' held at the Les Houches School of Physics as its XCIX session was designed to summarize this progress, lay out the open questions and define directions for future work. This books collects the lecture notes of the main courses given in this summer school.