Accompanying CD-ROM ... "contains spreadsheets used in many of the example calculations, color versions of some of the illustrations, and movies illustrating the NAPL migration."--Page vi.
The third edition of Introduction to Environmental Forensics is a state-of-the-art reference for the practicing environmental forensics consultant, regulator, student, academic, and scientist, with topics including compound-specific isotope analysis (CSIA), advanced multivariate statistical techniques, surrogate approaches for contaminant source identification and age dating, dendroecology, hydrofracking, releases from underground storage tanks and piping, and contaminant-transport modeling for forensic applications. Recognized international forensic scientists were selected to author chapters in their specific areas of expertise and case studies are included to illustrate the application of these methods in actual environmental forensic investigations. This edition provides updates on advances in various techniques and introduces several new topics. - Provides a comprehensive review of all aspects of environmental forensics - Coverage ranges from emerging statistical methods to state-of-the-art analytical techniques, such as gas chromatography-combustion-isotope ratio mass spectrometry and polytopic vector analysis - Numerous examples and case studies are provided to illustrate the application of these forensic techniques in environmental investigations
The purpose of this book is to help engineers and scientists better understand dense nonaqueous phase liquid (DNAPL) contamination of groundwater and the methods and technology used for characterization and remediation. Remediation of DNAPL source zones is very difficult and controversial and must be based on state-of-the-art knowledge of the behavior (transport and fate) of nonaqueous phase liquids in the subsurface and site specific geology, chemistry and hydrology. This volume is focused on the characterization and remediation of nonaqueous phase chlorinated solvents and it is hoped that mid-level engineers and scientists will find this book helpful in understanding the current state-of-practice of DNAPL source zone management and remediation.
This book presents a comprehensive, up-to-date review of technologies for cleaning up contaminants in groundwater and soil. It provides a special focus on three classes of contaminants that have proven very difficult to treat once released to the subsurface: metals, radionuclides, and dense nonaqueous-phase liquids such as chlorinated solvents. Groundwater and Soil Cleanup was commissioned by the Department of Energy (DOE) as part of its program to clean up contamination in the nuclear weapons production complex. In addition to a review of remediation technologies, the book describes new trends in regulation of contaminated sites and assesses DOE's program for developing new subsurface cleanup technologies.
At hundreds of thousands of commercial, industrial, and military sites across the country, subsurface materials including groundwater are contaminated with chemical waste. The last decade has seen growing interest in using aggressive source remediation technologies to remove contaminants from the subsurface, but there is limited understanding of (1) the effectiveness of these technologies and (2) the overall effect of mass removal on groundwater quality. This report reviews the suite of technologies available for source remediation and their ability to reach a variety of cleanup goals, from meeting regulatory standards for groundwater to reducing costs. The report proposes elements of a protocol for accomplishing source remediation that should enable project managers to decide whether and how to pursue source remediation at their sites.
This book gathers selected papers presented at the 8th International Congress on Environmental Geotechnics (ICEG), held on October 28 - November 1, 2018 in Hangzhou, China. The theme of the congress is “Towards a Sustainable Geoenvironment”, which means meeting the needs of the present generation without compromising the ability of future generations to meet their own needs. Under this theme, the congress covers a broad range of topics and provides an excellent opportunity for academics, engineers, scientists, government officials, regulators, and planners to present, discuss and exchange notes on the latest advances and developments in the research and application of environmental geotechnics.
Groundwater Science, 2E, covers groundwater's role in the hydrologic cycle and in water supply, contamination, and construction issues. It is a valuable resource for students and instructors in the geosciences (with focuses in hydrology, hydrogeology, and environmental science), and as a reference work for professional researchers. This interdisciplinary text weaves important methods and applications from the disciplines of physics, chemistry, mathematics, geology, biology, and environmental science, introducing you to the mathematical modeling and contaminant flow of groundwater. New to the Second Edition:. New chapter on subsurface heat flow and geothermal systems. Expanded content on well construction and design, surface water hydrology, groundwater/ surface water interaction, slug tests, pumping tests, and mounding analysis.. Updated discussions of groundwater modeling, calibration, parameter estimation, and uncertainty. Free software tools for slug test analysis, pumping test analysis, and aquifer modeling. Lists of key terms and chapter contents at the start of each chapter. Expanded end-of-chapter problems, including more conceptual questions. Two-color figures. Homework problems at the end of each chapter and worked examples throughout. Companion website with videos of field exploration and contaminant migration experiments, PDF files of USGS reports, and data files for homework problems. PowerPoint slides and solution manual for adopting faculty.