A number of food engineering operations, in which heat is not used as a preserving factor, have been employed and are applied for preparation (cleaning, sorting, etc.), conversion (milling, agglomeration, etc.) or preservation (irradiation, high pressure processing, pulsed electric fields, etc.) purposes in the food industry. This book presents a comprehensive treatise of all normally used food engineering operations that are carried out at room (or ambient) conditions, whether they are aimed at producing microbiologically safe foods with minimum alteration to sensory and nutritive properties, or they constitute routine preparative or transformation operations. The book is written for both undergraduate and graduate students, as well as for educators and practicing food process engineers. It reviews theoretical concepts, analyzes their use in operating variables of equipment, and discusses in detail different applications in diverse food processes.
Thermal Food Engineering Operations Presenting cutting-edge information on new and emerging food engineering processes, Thermal Food Engineering Operations, the first volume in the new series, “Bioprocessing in Food Science,” is an essential reference on the modeling, quality, safety, and technologies associated with food processing operations today. As the demand for healthy food increases in the current global scenario, manufacturers are searching for new possibilities for occupying a greater share in the rapidly changing food market. Compiled reports and updated knowledge on thermal processing of food products are imperative for commercial enterprises and manufacturing units. In the current scenario, academia, researchers, and food industries are working in a scattered manner and different technologies developed at each level are not compiled to implement for the benefits of different stakeholders. However, advancements in bioprocesses are required at all levels for the betterment of food industries and consumers. This series of groundbreaking edited volumes will be a comprehensive compilation of all the research that has been carried out so far, their practical applications, and the future scope of research and development in the food bioprocessing industry. This first volume includes all the conventional and novel thermal technologies based on conduction, convection, and radiation principles and covers the basics of microbial inactivation with heat treatments, aseptic processing, retorting, drying, dehydration, combined high-pressure thermal treatments, and safety and quality concerns in food processing. Before studying the novel non-thermal processes and the concept of minimal processing, comprehensive knowledge about the conventional thermal technologies is desired along with benefits, constraints, equipment, and implementation of these technologies. Whether for the engineer, scientist, or student, this series is a must-have for any library. This outstanding new volume: Discusses food safety and quality and thermal processing, laying the groundwork for further study and research Provides case studies of solid–liquid and supercritical fluid extraction Explores pasteurization, ohmic heating, irradiation, and more Presents cutting-edge information on new and emerging food engineering processes Audience: Process and chemical engineers, chemists, engineers in other disciplines, managers, researchers, scientists, students, and teachers working in the field of food engineering and processing
This book describes the advent and adaptation of food processing operations, processes and techniques which reduce, even eliminate the thermal component, resulting in microbiologically safe foods with minimum alteration in sensory and nutritive properties.
This book presents the latest developments in the area of non-thermal preservation of foods and covers various topics such as high-pressure processing, pulsed electric field processing, pulsed light processing, ozone processing, electron beam processing, pulsed magnetic field, ultrasonics, and plasma processing. Non-thermal Processing of Foods discusses the use of non-thermal processing on commodities such as fruits and vegetables, cereal products, meat, fish and poultry, and milk and milk products. Features: Provides latest information regarding the use of non-thermal processing of food products Provides information about most of the non-thermal technologies available for food processing Covers food products such as fruits and vegetables, cereal products, meat, fish and poultry, and milk and milk products Discusses the packaging requirements for foods processed with non-thermal techniques The effects of non-thermal processing on vital food components, enzymes and microorganisms is also discussed. Safety aspects and packaging requirements for non-thermal processed foods are also presented. Rounding out coverage of this technology are chapters that cover commercialization, regulatory issues and consumer acceptance of foods processed with non-thermal techniques. The future trends of non-thermal processing are also investigated. Food scientists and food engineers, food regulatory agencies, food industry personnel and academia (including graduate students) will find valuable information in this book. Food product developers and food processors will also benefit from this book.
Chapter 1. Status and Trends of Novel Thermal and Non-Thermal Technologies for Fluid Foods -- Chapter 2. Fluid Dynamics in Novel Thermal and Non-Thermal Processes -- Chapter 3. Fluid Rheology in Novel Thermal and Non-Thermal Processes --Chapter 4. Pulsed Electric Field Processing of Fluid Foods -- Chapter 5. High Pressure Processing of Fluid Foods -- Chapter 6. Ultrasound Processing of Fluid Foods -- Chapter 7. Irradiation of Fluid Foods -- Chapter 8. Ultraviolet and Pulsed Light Processing of Fluid Foods -- Chapter 9. Ozone Processing of Fluid Foods -- Chapter 10. Dense Phase Carbon Dioxide Processing of Fluid Foods -- Chapter 11. Ohmic Heating of Fluid Foods -- Chapter 12. Microwave Heating of Fluid Foods -- Chapter 13. Infrared Heating of Fluid Foods -- Chapter 14. Modelling the Kinetics of Microbial and Quality Attributes of Fluid Food during Novel Thermal and Non-Thermal Processes -- Chapter 15. Regulatory and Legislative issues for Thermal and Non-Thermal Technologies: An EU Pers ...
A unique and interdisciplinary field, food processing must meet basic process engineering considerations such as material and energy balances, as well as the more specialized requirements of food acceptance, human nutrition, and food safety. Food engineering, therefore, is a field of major concern to university departments of food science, and chemical and biological engineering as well as engineers and scientists working in various food processing industries. Part of the notable CRC Press Contemporary Food Engineering series, Food Process Engineering Operations focuses on the application of chemical engineering unit operations to the handling, processing, packaging, and distribution of food products. Chapters 1 through 5 open the text with a review of the fundamentals of process engineering and food processing technology, with typical examples of food process applications. The body of the book then covers food process engineering operations in detail, including theory, process equipment, engineering operations, and application examples and problems. Based on the authors’ long teaching and research experience both in the US and Greece, this highly accessible textbook employs simple diagrams to illustrate the mechanism of each operation and the main components of the process equipment. It uses simplified calculations requiring only elementary calculus and offers realistic values of food engineering properties taken from the published literature and the authors’ experience. The appendix contains useful engineering data for process calculations, such as steam tables, engineering properties, engineering diagrams, and suppliers of process equipment. Designed as a one or two semester textbook for food science students, Food Process Engineering Operations examines the applications of process engineering fundamentals to food processing technology making it an important reference for students of chemical and biological engineering interested in food engineering, and for scientists, engineers, and technologists working in food processing industries.
NONTHERMAL FOOD ENGINEERING OPERATIONS Presenting cutting-edge information on new and emerging food engineering processes, Nonthermal Food Engineering Operations, the latest volume in the series, “Bioprocessing in Food Science,” is an essential reference on the modeling, quality, safety, and technologies associated with food processing operations today. “Bioprocessing in Food Science” is a series of volumes covering the entirety of unit operations in food processing. This latest volume covers nonthermal food engineering operations, focusing on packaging techniques, artificial intelligence and other emerging technologies and their use and relevance within food engineering, fluid extraction, nanotechnology, and many other topics. As the demand for healthy food is increasing in the current global scenario, manufacturers are searching for new possibilities for occupying a greater share in the rapidly changing food market. Compiled reports and updated knowledge on thermal processing of food products are imperative for commercial enterprises and manufacturing units. In the current scenario, academia, researchers, and food industries are working in a scattered manner and different technologies developed at each level are not compiled to implement for the benefits of different stakeholders. However, advancements in bioprocesses are required at all levels for the betterment of food industries and consumers. This series of groundbreaking edited volumes will be a comprehensive compilation of all the research that has been carried out so far, their practical applications, and the future scope of research and development in the food bioprocessing industry. During the last decade, there have been major developments in novel technologies for food processing. This series will cover all the novel technologies employed for processing different types of foods, encompassing the background, principles, classification, applications, equipment, effect on foods, legislative issue, technology implementation, constraints, and food and human safety concerns.
The past 30 years have seen the establishment of food engineering both as an academic discipline and as a profession. Combining scientific depth with practical usefulness, this book serves as a tool for graduate students as well as practicing food engineers, technologists and researchers looking for the latest information on transformation and preservation processes as well as process control and plant hygiene topics. - Strong emphasis on the relationship between engineering and product quality/safety - Links theory and practice - Considers topics in light of factors such as cost and environmental issues
Non-thermal operations in food processing are an alternative to thermal operations and similarly aimed at retaining the quality and organoleptic properties of food products. This volume covers different non-thermal processing technologies such as high-pressure processing, ultrasound, ohmic heating, pulse electric field, pulse light, membrane processing, cryogenic freezing, nanofiltration, and cold plasma processing technologies. The book focuses both on fundamentals and on recent advances in non-thermal food processing technologies. It also provides information with the description and results of research into new emerging technologies for both the academy and industry. Key features: Presents engineering focus on non-thermal food processing technologies. Discusses sub-classification for recent trends and relevant industry information/examples. Different current research-oriented results are included as a key parameter. Covers high-pressure processing, pulse electric field, pulse light technology, irradiation, and ultrasonic techniques. Includes mathematical modeling and numerical simulations. Food Processing: Advances in Non-Thermal Technologies is aimed at graduate students, professionals in food engineering, food technology, and biological systems engineering.
Covers a Host of Groundbreaking TechniquesThermal processing is known to effectively control microbial populations in food, but the procedure also has a downsideit can break down the biochemical composition of foods, resulting in a marked loss of sensory and nutritional quality. Processing Effects on Safety and Quality of Foods delineates three dec