Non-monotonic Approach to Robust H∞ Control of Multi-model Systems

Non-monotonic Approach to Robust H∞ Control of Multi-model Systems

Author: Jiwei Wen

Publisher: Academic Press

Published: 2019-06-06

Total Pages: 224

ISBN-13: 0128148691

DOWNLOAD EBOOK

Non-monotonic Approach to Robust H8 Control of Multi-model Systems focuses on robust analysis and synthesis problems for multi-model systems based on the non-monotonic Lyapunov Functionals (LFs) approach that enlarges the stability region and improves control performance. By fully considering the diversity of switching laws, the multi-step time difference, the multi-step prediction, and the expansion of system dimension, the non-monotonic LF can be properly constructed. The focus of this book is placed on the H8 state feedback control, H8 filtering and H8 output feedback control for multi-model systems via a non-monotonic LF approach. The book's authors provide illustrative examples to show the feasibility and efficiency of the proposed methods, along with practical examples that demonstrate the effectiveness and potential of theoretical results. - Offers tools for the analysis and design of control processes where the process can be represented by multi-models - Presents a comprehensive explanation of recent developments in non-monotonic approaches to robust H-infinity control of multi-model systems - Gives numerical examples and simulation results in each chapter to demonstrate engineering potential


Robust Control

Robust Control

Author: Andrzej Bartoszewicz

Publisher: BoD – Books on Demand

Published: 2011-04-11

Total Pages: 696

ISBN-13: 9533072296

DOWNLOAD EBOOK

The main objective of this monograph is to present a broad range of well worked out, recent theoretical and application studies in the field of robust control system analysis and design. The contributions presented here include but are not limited to robust PID, H-infinity, sliding mode, fault tolerant, fuzzy and QFT based control systems. They advance the current progress in the field, and motivate and encourage new ideas and solutions in the robust control area.


Robust Control

Robust Control

Author: Moises Rivas-Lopez

Publisher: BoD – Books on Demand

Published: 2016-07-06

Total Pages: 176

ISBN-13: 9535124234

DOWNLOAD EBOOK

The need to be tolerant to changes in the control systems or in the operational environment of systems subject to unknown disturbances has generated new control methods that are able to deal with the non-parametrized disturbances of systems, without adapting itself to the system uncertainty but rather providing stability in the presence of errors bound in a model. With this approach in mind and with the intention to exemplify robust control applications, this book includes selected chapters that describe models of H-infinity loop, robust stability and uncertainty, among others. Each robust control method and model discussed in this book is illustrated by a relevant example that serves as an overview of the theoretical and practical method in robust control.


Robust Cooperative Control of Multi-Agent Systems

Robust Cooperative Control of Multi-Agent Systems

Author: Chunyan Wang

Publisher: CRC Press

Published: 2021-05-19

Total Pages: 133

ISBN-13: 1000376648

DOWNLOAD EBOOK

This book presents a concise introduction to the latest advances in robust cooperative control design for multi-agent systems with input delay and external disturbances, especially from a prediction and observation perspective. The volume covers a wide range of applications, such as the trajectory tracking of quadrotors, formation flying of multiple unmanned aerial vehicles (UAVs) and fixed-time formation of ground vehicles. Robust cooperative control means that multi-agent systems are able to achieve specified control tasks while remaining robust in the face of both parametric and nonparametric model uncertainties. In addition, the authors cover a wide range of key issues in cooperative control, such as communication and input delays, parametric model uncertainties and external disturbances. Moving beyond the scope of existing works, a systematic prediction and observation approach to designing robust cooperative control laws is presented. About the Authors Chunyan Wang is an Associate Professor in the School of Aerospace Engineering at Beijing Institute of Technology, China. Zongyu Zuo is a full Professor with the School of Automation Science and Electrical Engineering, Beihang University, China. Jianan Wang is an Associate Professor in the School of Aerospace Engineering at Beijing Institute of Technology, China. Zhengtao Ding is a Professor in the Department of Electrical and Electronic Engineering at University of Manchester, U.K.


Multiple Models Approach in Automation

Multiple Models Approach in Automation

Author: Mohammed Chadli

Publisher: John Wiley & Sons

Published: 2012-11-19

Total Pages: 212

ISBN-13: 184821412X

DOWNLOAD EBOOK

Much work on analysis and synthesis problems relating to the multiple model approach has already been undertaken. This has been motivated by the desire to establish the problems of control law synthesis and full state estimation in numerical terms. In recent years, a general approach based on multiple LTI models (linear or affine) around various function points has been proposed. This so-called multiple model approach is a convex polytopic representation, which can be obtained either directly from a nonlinear mathematical model, through mathematical transformation or through linearization around various function points. This book concentrates on the analysis of the stability and synthesis of control laws and observations for multiple models. The authors’ approach is essentially based on Lyapunov’s second method and LMI formulation. Uncertain multiple models with unknown inputs are studied and quadratic and non-quadratic Lyapunov functions are also considered.


The Robust Maximum Principle

The Robust Maximum Principle

Author: Vladimir G. Boltyanski

Publisher: Birkhäuser

Published: 2011-11-05

Total Pages: 432

ISBN-13: 9780817681517

DOWNLOAD EBOOK

Covering some of the key areas of optimal control theory (OCT), a rapidly expanding field, the authors use new methods to set out a version of OCT’s more refined ‘maximum principle.’ The results obtained have applications in production planning, reinsurance-dividend management, multi-model sliding mode control, and multi-model differential games. This book explores material that will be of great interest to post-graduate students, researchers, and practitioners in applied mathematics and engineering, particularly in the area of systems and control.


Robust Adaptive Control

Robust Adaptive Control

Author: Petros Ioannou

Publisher: Courier Corporation

Published: 2013-09-26

Total Pages: 850

ISBN-13: 0486320723

DOWNLOAD EBOOK

Presented in a tutorial style, this comprehensive treatment unifies, simplifies, and explains most of the techniques for designing and analyzing adaptive control systems. Numerous examples clarify procedures and methods. 1995 edition.


Robust and Optimal Control

Robust and Optimal Control

Author: Mi-Ching Tsai

Publisher: Springer

Published: 2017-04-30

Total Pages: 0

ISBN-13: 9781447172369

DOWNLOAD EBOOK

A Two-port Framework for Robust and Optimal Control introduces an alternative approach to robust and optimal controller synthesis procedures for linear, time-invariant systems, based on the two-port system widespread in electrical engineering. The novel use of the two-port system in this context allows straightforward engineering-oriented solution-finding procedures to be developed, requiring no mathematics beyond linear algebra. A chain-scattering description provides a unified framework for constructing the stabilizing controller set and for synthesizing H2 optimal and H∞ sub-optimal controllers. Simple yet illustrative examples explain each step. A Two-port Framework for Robust and Optimal Control features: · a hands-on, tutorial-style presentation giving the reader the opportunity to repeat the designs presented and easily to modify them for their own programs; · an abundance of examples illustrating the most important steps in robust and optimal design; and · end-of-chapter exercises. To further demonstrate the proposed approaches, in the last chapter an application case study is presented which demonstrates the use of the framework in a real-world control system design and helps the reader quickly move on with their own challenges. MATLAB® codes used in examples throughout the book and solutions to selected exercise questions are available for download. The text will have particular resonance for researchers in control with an electrical engineering background, who wish to avoid spending excessive time in learning complex mathematical, theoretical developments but need to know how to deal with robust and optimal control synthesis problems. Please see [http://km.emotors.ncku.edu.tw/class/hw1.html] for solutions to the exercises provided in this book.