Non-Gaussian Statistical Communication Theory

Non-Gaussian Statistical Communication Theory

Author: David Middleton

Publisher: John Wiley & Sons

Published: 2012-05-11

Total Pages: 662

ISBN-13: 1118161955

DOWNLOAD EBOOK

The book is based on the observation that communication is the central operation of discovery in all the sciences. In its "active mode" we use it to "interrogate" the physical world, sending appropriate "signals" and receiving nature's "reply". In the "passive mode" we receive nature's signals directly. Since we never know a prioriwhat particular return signal will be forthcoming, we must necessarily adopt a probabilistic model of communication. This has developed over the approximately seventy years since it's beginning, into a Statistical Communication Theory (or SCT). Here it is the set or ensemble of possible results which is meaningful. From this ensemble we attempt to construct in the appropriate model format, based on our understanding of the observed physical data and on the associated statistical mechanism, analytically represented by suitable probability measures. Since its inception in the late '30's of the last century, and in particular subsequent to World War II, SCT has grown into a major field of study. As we have noted above, SCT is applicable to all branches of science. The latter itself is inherently and ultimately probabilistic at all levels. Moreover, in the natural world there is always a random background "noise" as well as an inherent a priori uncertainty in the presentation of deterministic observations, i.e. those which are specifically obtained, a posteriori. The purpose of the book is to introduce Non-Gaussian statistical communication theory and demonstrate how the theory improves probabilistic model. The book was originally planed to include 24 chapters as seen in the table of preface. Dr. Middleton completed first 10 chapters prior to his passing in 2008. Bibliography which represents remaining chapters are put together by the author's close colleagues; Drs. Vincent Poor, Leon Cohen and John Anderson. email [email protected] to request Ch.10


Non-Gaussian Statistical Communication Theory

Non-Gaussian Statistical Communication Theory

Author: David Middleton

Publisher: John Wiley & Sons

Published: 2012-05-29

Total Pages: 662

ISBN-13: 0470948477

DOWNLOAD EBOOK

The book is based on the observation that communication is the central operation of discovery in all the sciences. In its "active mode" we use it to "interrogate" the physical world, sending appropriate "signals" and receiving nature's "reply". In the "passive mode" we receive nature's signals directly. Since we never know a prioriwhat particular return signal will be forthcoming, we must necessarily adopt a probabilistic model of communication. This has developed over the approximately seventy years since it's beginning, into a Statistical Communication Theory (or SCT). Here it is the set or ensemble of possible results which is meaningful. From this ensemble we attempt to construct in the appropriate model format, based on our understanding of the observed physical data and on the associated statistical mechanism, analytically represented by suitable probability measures. Since its inception in the late '30's of the last century, and in particular subsequent to World War II, SCT has grown into a major field of study. As we have noted above, SCT is applicable to all branches of science. The latter itself is inherently and ultimately probabilistic at all levels. Moreover, in the natural world there is always a random background "noise" as well as an inherent a priori uncertainty in the presentation of deterministic observations, i.e. those which are specifically obtained, a posteriori. The purpose of the book is to introduce Non-Gaussian statistical communication theory and demonstrate how the theory improves probabilistic model. The book was originally planed to include 24 chapters as seen in the table of preface. Dr. Middleton completed first 10 chapters prior to his passing in 2008. Bibliography which represents remaining chapters are put together by the author's close colleagues; Drs. Vincent Poor, Leon Cohen and John Anderson. email [email protected] to request Ch.10


An Introduction to Statistical Communication Theory

An Introduction to Statistical Communication Theory

Author: David Middleton

Publisher: Wiley-IEEE Press

Published: 1996-05-08

Total Pages: 1192

ISBN-13:

DOWNLOAD EBOOK

This IEEE Classic Reissue provides at an advanced level, a uniquely fundamental exposition of the applications of Statistical Communication Theory to a vast spectrum of important physical problems. Included are general analysis of signal detection, estimation, measurement, and related topics involving information transfer. Using the statistical Bayesian viewpoint, renowned author David Middleton employs statistical decision theory specifically tailored for the general tasks of signal processing. Dr. Middleton also provides a special focus on physical modeling of the canonical channel with real-world examples relating to radar, sonar, and general telecommunications. This book offers a detailed treatment and an array of problems and results spanning an exceptionally broad range of technical subjects in the communications field. Complete with special functions, integrals, solutions of integral equations, and an extensive, updated bibliography by chapter, An Introduction to Statistical Communication Theory is a seminal reference, particularly for anyone working in the field of communications, as well as in other areas of statistical physics. (Originally published in 1960.)


Bayesian Signal Processing

Bayesian Signal Processing

Author: James V. Candy

Publisher: John Wiley & Sons

Published: 2016-07-12

Total Pages: 640

ISBN-13: 1119125456

DOWNLOAD EBOOK

Presents the Bayesian approach to statistical signal processing for a variety of useful model sets This book aims to give readers a unified Bayesian treatment starting from the basics (Baye’s rule) to the more advanced (Monte Carlo sampling), evolving to the next-generation model-based techniques (sequential Monte Carlo sampling). This next edition incorporates a new chapter on “Sequential Bayesian Detection,” a new section on “Ensemble Kalman Filters” as well as an expansion of Case Studies that detail Bayesian solutions for a variety of applications. These studies illustrate Bayesian approaches to real-world problems incorporating detailed particle filter designs, adaptive particle filters and sequential Bayesian detectors. In addition to these major developments a variety of sections are expanded to “fill-in-the gaps” of the first edition. Here metrics for particle filter (PF) designs with emphasis on classical “sanity testing” lead to ensemble techniques as a basic requirement for performance analysis. The expansion of information theory metrics and their application to PF designs is fully developed and applied. These expansions of the book have been updated to provide a more cohesive discussion of Bayesian processing with examples and applications enabling the comprehension of alternative approaches to solving estimation/detection problems. The second edition of Bayesian Signal Processing features: “Classical” Kalman filtering for linear, linearized, and nonlinear systems; “modern” unscented and ensemble Kalman filters: and the “next-generation” Bayesian particle filters Sequential Bayesian detection techniques incorporating model-based schemes for a variety of real-world problems Practical Bayesian processor designs including comprehensive methods of performance analysis ranging from simple sanity testing and ensemble techniques to sophisticated information metrics New case studies on adaptive particle filtering and sequential Bayesian detection are covered detailing more Bayesian approaches to applied problem solving MATLAB® notes at the end of each chapter help readers solve complex problems using readily available software commands and point out other software packages available Problem sets included to test readers’ knowledge and help them put their new skills into practice Bayesian Signal Processing, Second Edition is written for all students, scientists, and engineers who investigate and apply signal processing to their everyday problems.


Information and Communication Theory

Information and Communication Theory

Author: Stefan Host

Publisher: John Wiley & Sons

Published: 2019-03-04

Total Pages: 366

ISBN-13: 1119433800

DOWNLOAD EBOOK

An important text that offers an in-depth guide to how information theory sets the boundaries for data communication In an accessible and practical style, Information and Communication Theory explores the topic of information theory and includes concrete tools that are appropriate for real-life communication systems. The text investigates the connection between theoretical and practical applications through a wide-variety of topics including an introduction to the basics of probability theory, information, (lossless) source coding, typical sequences as a central concept, channel coding, continuous random variables, Gaussian channels, discrete input continuous channels, and a brief look at rate distortion theory. The author explains the fundamental theory together with typical compression algorithms and how they are used in reality. He moves on to review source coding and how much a source can be compressed, and also explains algorithms such as the LZ family with applications to e.g. zip or png. In addition to exploring the channel coding theorem, the book includes illustrative examples of codes. This comprehensive text: Provides an adaptive version of Huffman coding that estimates source distribution Contains a series of problems that enhance an understanding of information presented in the text Covers a variety of topics including optimal source coding, channel coding, modulation and much more Includes appendices that explore probability distributions and the sampling theorem Written for graduate and undergraduate students studying information theory, as well as professional engineers, master’s students, Information and Communication Theory offers an introduction to how information theory sets the boundaries for data communication.


Adaptive Antennas and Receivers

Adaptive Antennas and Receivers

Author: Melvin M. Weiner

Publisher: CRC Press

Published: 2018-10-08

Total Pages: 1240

ISBN-13: 1420026496

DOWNLOAD EBOOK

In our modern age of remote sensing, wireless communication, and the nearly endless list of other antenna-based applications, complex problems require increasingly sophisticated solutions. Conventional antenna systems are no longer suited to high-noise or low-signal applications such as intrusion detection. Detailing highly effective approaches to non-Gaussian weak signal detection, Adaptive Antennas and Receivers provides an authoritative introduction to state-of-the-art research on the modeling, testing, and application of these technologies. Edited by innovative researcher and eminent expert Melvin M. Weiner, this book is the first to integrate three advanced approaches to non-Gaussian weak signal detection into a single reference: homogeneous partitioning of the surveillance volume, adaptive antennas, and adaptive receivers. Comprising self-contained chapters contributed by renowned experts such as Donald D. Weiner and Ronald Fante, each chapter explores the techniques, theoretical basis, and applications of the approach under discussion. The book considers signal detection in the presence of external noise such as clutter residue, interference, atmospheric noise, jammers, external thermal noise, in vivo surrounding tissue, and camouflaging material, making it ideal for use across a broad spectrum of applications. This authoritative reference supplies more than 750 figures and tables, 1460 equations, and 640 references. Adaptive Antennas and Receivers is an ideal resource for improving performance in surveillance, communication, navigation, artificial intelligence, computer tomography, neuroscience, and intrusion detection systems, to name only a few.


Classical, Semi-classical and Quantum Noise

Classical, Semi-classical and Quantum Noise

Author: Leon Cohen

Publisher: Springer Science & Business Media

Published: 2011-12-21

Total Pages: 302

ISBN-13: 1441966242

DOWNLOAD EBOOK

David Middleton was a towering figure of 20th Century engineering and science and one of the founders of statistical communication theory. During the second World War, the young David Middleton, working with Van Fleck, devised the notion of the matched filter, which is the most basic method used for detecting signals in noise. Over the intervening six decades, the contributions of Middleton have become classics. This collection of essays by leading scientists, engineers and colleagues of David are in his honor and reflect the wide influence that he has had on many fields. Also included is the introduction by Middleton to his forthcoming book, which gives a wonderful view of the field of communication, its history and his own views on the field that he developed over the past 60 years. Focusing on classical noise modeling and applications, Classical, Semi-Classical and Quantum Noise includes coverage of statistical communication theory, non-stationary noise, molecular footprints, noise suppression, Quantum error correction, and other related topics.


Bandwidth Efficient Coding

Bandwidth Efficient Coding

Author: John B. Anderson

Publisher: John Wiley & Sons

Published: 2017-03-27

Total Pages: 208

ISBN-13: 1119345332

DOWNLOAD EBOOK

This book addresses coding, a new solution to the major challenge of communicating more bits of information in the same radio spectrum. Explores concepts and new transmission methods that have arisen in the last 15 years Discusses the method of faster than Nyquist signaling Provides self-education resources by including design parameters and short MATLAB routines Bandwidth Efficient Coding takes a fresh look at classical information theory and introduces a different point of view for research and development engineers and graduate students in communication engineering and wireless communication.