Non-Equilibrium Particle Dynamics

Non-Equilibrium Particle Dynamics

Author: Albert S. Kim

Publisher: BoD – Books on Demand

Published: 2019-12-04

Total Pages: 198

ISBN-13: 1839680776

DOWNLOAD EBOOK

All engineering processes are processes of non-equilibrium because one or all of heat, mass, and momentum transfer occur in an open system. The pure equilibrium state can be established in an isolated system, in which neither mass nor heat is transferred between the system and the environment. Most engineering transport analyses are based on the semi-, quasi-, or local equilibrium assumptions, which assume that any infinitesimal volume can be treated as a box of equilibrium. This book includes various aspects of non-equilibrium or irreversible statistical mechanics and their relationships with engineering applications. I hope that this book contributes to expanding the predictability of holistic engineering consisting of thermo-, fluid, and particle dynamics.


Many-Particle Dynamics and Kinetic Equations

Many-Particle Dynamics and Kinetic Equations

Author: C. Cercignani

Publisher: Springer Science & Business Media

Published: 1997-07-31

Total Pages: 262

ISBN-13: 9780792346968

DOWNLOAD EBOOK

As our title suggests, there are two aspects in the subject of this book. The first is the mathematical investigation of the dynamics of infinite systems of in teracting particles and the description of the time evolution of their states. The second is the rigorous derivation of kinetic equations starting from the results of the aforementioned investigation. As is well known, statistical mechanics started in the last century with some papers written by Maxwell and Boltzmann. Although some of their statements seemed statistically obvious, we must prove that they do not contradict what me chanics predicts. In some cases, in particular for equilibrium states, it turns out that mechanics easily provides the required justification. However things are not so easy, if we take a step forward and consider a gas is not in equilibrium, as is, e.g., the case for air around a flying vehicle. Questions of this kind have been asked since the dawn of the kinetic theory of gases, especially when certain results appeared to lead to paradoxical conclu sions. Today this matter is rather well understood and a rigorous kinetic theory is emerging. The importance of these developments stems not only from the need of providing a careful foundation of such a basic physical theory, but also to exhibit a prototype of a mathematical construct central to the theory of non-equilibrium phenomena of macroscopic size.


Topological Defects and the Non-Equilibrium Dynamics of Symmetry Breaking Phase Transitions

Topological Defects and the Non-Equilibrium Dynamics of Symmetry Breaking Phase Transitions

Author: Yuriy M. Bunkov

Publisher: Springer Science & Business Media

Published: 2000-02-29

Total Pages: 70

ISBN-13: 9780792362050

DOWNLOAD EBOOK

Topological defects formed at symmetry-breaking phase transitions play an important role in many different fields of physics. They appear in many condensed-matter systems at low temperature; examples include vortices in superfluid helium-4, a rich variety of defects in helium-3, quantized mag netic flux tubes in type-II superconductors, and disclination lines and other defects in liquid crystals. In cosmology, unified gauge theories of particle interactions suggest a sequence of phase transitions in the very early uni verse some of which may lead to defect formation. In astrophysics, defects play an important role in the dynamics of neutron stars. In 1997 the European Science Foundation started the scientific network "Topological defects" headed by Tom Kibble. This network has provided us with a unique opportunity of establishing a collaboration between the representatives of these very different branches of modern physics. The NATO-ASI (Advanced Study Institute), held in Les Houches in February 1999 thanks to the support of the Scientific Division of NATO, the European Science Foundation and the CNRS, represents a key event of this ESF network. It brought together participants from widely different fields, with diverse expertise and vocabulary, fostering the exchange of ideas. The lectures given by particle physicists, cosmologists and condensed matter physicists are the result of the fruitful collaborations established since 1997 between groups in several European countries and in the U.S.A.


Quantum Gases

Quantum Gases

Author: Nick Proukakis

Publisher: World Scientific

Published: 2013

Total Pages: 579

ISBN-13: 1848168128

DOWNLOAD EBOOK

This volume provides a broad overview of the principal theoretical techniques applied to non-equilibrium and finite temperature quantum gases. Covering Bose-Einstein condensates, degenerate Fermi gases, and the more recently realised exciton-polariton condensates, it fills a gap by linking between different methods with origins in condensed matter physics, quantum field theory, quantum optics, atomic physics, and statistical mechanics.


Nonequilibrium Gas Dynamics and Molecular Simulation

Nonequilibrium Gas Dynamics and Molecular Simulation

Author: Iain D. Boyd

Publisher: Cambridge University Press

Published: 2017-03-23

Total Pages: 383

ISBN-13: 1107073448

DOWNLOAD EBOOK

7.1 Introduction -- 7.2 Rotational Energy Exchange Models -- 7.2.1 Constant Collision Number -- 7.2.2 The Parker Model -- 7.2.3 Variable Probability Exchange Model of Boyd -- 7.2.4 Nonequilibrium Direction Dependent Model -- 7.2.5 Model Results -- 7.3 Vibrational Energy Exchange Models -- 7.3.1 Constant Collision Number -- 7.3.2 The Millikan-White Model -- 7.3.3 Quantized Treatment for Vibration -- 7.3.4 Model Results -- 7.4 Dissociation Chemical Reactions -- 7.4.1 Total Collision Energy Model -- 7.4.2 Redistribution of Energy Following a Dissociation Reaction -- 7.4.3 Vibrationally Favored Dissociation Model -- 7.5 General Chemical Reactions -- 7.5.1 Reaction Rates and Equilibrium Constant -- 7.5.2 Backward Reaction Rates in DSMC -- 7.5.3 Three-Body Recombination Reactions -- 7.5.4 Post-Reaction Energy Redistribution and General Implementation -- 7.5.5 DSMC Solutions for Reacting Flows -- 7.6 Summary -- Appendix A: Generating Particle Properties -- Appendix B: Collisional Quantities -- Appendix C: Determining Post-Collision Velocities -- Appendix D: Macroscopic Properties -- Appendix E: Common Integrals -- References -- Index


Stochastic Dynamics Out of Equilibrium

Stochastic Dynamics Out of Equilibrium

Author: Giambattista Giacomin

Publisher: Springer

Published: 2019-06-30

Total Pages: 654

ISBN-13: 3030150968

DOWNLOAD EBOOK

Stemming from the IHP trimester "Stochastic Dynamics Out of Equilibrium", this collection of contributions focuses on aspects of nonequilibrium dynamics and its ongoing developments. It is common practice in statistical mechanics to use models of large interacting assemblies governed by stochastic dynamics. In this context "equilibrium" is understood as stochastically (time) reversible dynamics with respect to a prescribed Gibbs measure. Nonequilibrium dynamics correspond on the other hand to irreversible evolutions, where fluxes appear in physical systems, and steady-state measures are unknown. The trimester, held at the Institut Henri Poincaré (IHP) in Paris from April to July 2017, comprised various events relating to three domains (i) transport in non-equilibrium statistical mechanics; (ii) the design of more efficient simulation methods; (iii) life sciences. It brought together physicists, mathematicians from many domains, computer scientists, as well as researchers working at the interface between biology, physics and mathematics. The present volume is indispensable reading for researchers and Ph.D. students working in such areas.


Nonequilibrium Molecular Dynamics

Nonequilibrium Molecular Dynamics

Author: Billy D. Todd

Publisher: Cambridge University Press

Published: 2017-03-10

Total Pages: 371

ISBN-13: 0521190096

DOWNLOAD EBOOK

This coherent collection of theory, algorithms, and illustrative results presents the field of nonequilibrium molecular dynamics in detail.


Nonequilibrium Many-Body Theory of Quantum Systems

Nonequilibrium Many-Body Theory of Quantum Systems

Author: Gianluca Stefanucci

Publisher: Cambridge University Press

Published: 2013-03-07

Total Pages: 619

ISBN-13: 1107354579

DOWNLOAD EBOOK

The Green's function method is one of the most powerful and versatile formalisms in physics, and its nonequilibrium version has proved invaluable in many research fields. This book provides a unique, self-contained introduction to nonequilibrium many-body theory. Starting with basic quantum mechanics, the authors introduce the equilibrium and nonequilibrium Green's function formalisms within a unified framework called the contour formalism. The physical content of the contour Green's functions and the diagrammatic expansions are explained with a focus on the time-dependent aspect. Every result is derived step-by-step, critically discussed and then applied to different physical systems, ranging from molecules and nanostructures to metals and insulators. With an abundance of illustrative examples, this accessible book is ideal for graduate students and researchers who are interested in excited state properties of matter and nonequilibrium physics.


Quantum Field Theory of Non-equilibrium States

Quantum Field Theory of Non-equilibrium States

Author: Jørgen Rammer

Publisher: Cambridge University Press

Published: 2011-03-03

Total Pages: 0

ISBN-13: 9780521188005

DOWNLOAD EBOOK

Quantum field theory is the application of quantum mechanics to systems with infinitely many degrees of freedom. This 2007 textbook presents quantum field theoretical applications to systems out of equilibrium. It introduces the real-time approach to non-equilibrium statistical mechanics and the quantum field theory of non-equilibrium states in general. It offers two ways of learning how to study non-equilibrium states of many-body systems: the mathematical canonical way and an easy intuitive way using Feynman diagrams. The latter provides an easy introduction to the powerful functional methods of field theory, and the use of Feynman diagrams to study classical stochastic dynamics is considered in detail. The developed real-time technique is applied to study numerous phenomena in many-body systems. Complete with numerous exercises to aid self-study, this textbook is suitable for graduate students in statistical mechanics and condensed matter physics.