Non-equilibrium Energy Transformation Processes

Non-equilibrium Energy Transformation Processes

Author: Viktor Holubec

Publisher: Springer

Published: 2014-05-22

Total Pages: 161

ISBN-13: 3319070916

DOWNLOAD EBOOK

Various experimental techniques have been advanced in recent years to measure non-equilibrium energy transformations on the microscopic scale of single molecules. In general, the systems studied in the corresponding experiments are exposed to strong thermal fluctuations and thus the relevant energetic variables such as work and heat become stochastic. This thesis addresses challenging theoretical problems in this active field of current research: 1) Exact analytical solutions of work and heat distributions for isothermal non-equilibrium processes in suitable models are obtained; 2) Corresponding solutions for cyclic processes involving two different heat reservoirs are found; 3) Optimization of periodic driving protocols for such cyclic processes with respect to maximal output power, efficiency and minimal power fluctuations is studied. The exact solutions for work and heat distributions provide a reference for theoretical investigations of more complicated models, giving insight into the structure of the tail of work distributions and serving as valuable test cases for simulations of the underlying stochastic processes.


Thermodynamics of Non-Equilibrium Processes for Chemists with a Particular Application to Catalysis

Thermodynamics of Non-Equilibrium Processes for Chemists with a Particular Application to Catalysis

Author: V. Parmon

Publisher: Elsevier

Published: 2009-09-26

Total Pages: 340

ISBN-13: 0080931960

DOWNLOAD EBOOK

Thermodynamics of Non-Equilibrium Processes for Chemists with a Particular Application to Catalysis consists of materials adapted from lectures on the thermodynamics of nonequilibrium processes that have been taught at the Department of Natural Sciences of Novosibirsk State University since 1995. The thermodynamics of nonequilibrium processes traditionally required students to have a strong background in physics. However, the materials featured in this volume allow anyone with knowledge in classical thermodynamics of equilibrium processes and traditional chemical kinetics to understand the subject. Topics discussed include systems in the thermodynamics of irreversible processes; thermodynamics of systems that are close to and far from equilibrium; thermodynamics of catalysts; the application of nonequilibrium thermodynamics to material science; and the relationship between entropy and information. This book will be helpful for research into complex chemical transformations, particularly catalytic transformations. - Applies simple approaches of non-equilibrium thermodynamics to analyzing properties of chemically reactive systems - Covers systems far from equilibrium, allowing the consideration of most chemically reactive systems of a chemical or biological nature - This approach resolves many complicated problems in the teaching of chemical kinetics


Nonequilibrium Thermodynamics

Nonequilibrium Thermodynamics

Author: Yasar Demirel

Publisher: Newnes

Published: 2013-12-16

Total Pages: 787

ISBN-13: 0444595813

DOWNLOAD EBOOK

Natural phenomena consist of simultaneously occurring transport processes and chemical reactions. These processes may interact with each other and may lead to self-organized structures, fluctuations, instabilities, and evolutionary systems. Nonequilibrium Thermodynamics, Third Edition emphasizes the unifying role of thermodynamics in analyzing the natural phenomena. This third edition updates and expands on the first and second editions by focusing on the general balance equations for coupled processes of physical, chemical, and biological systems. The new edition contains a new chapter on stochastic approaches to include the statistical thermodynamics, mesoscopic nonequilibrium thermodynamics, fluctuation theory, information theory, and modeling the coupled biochemical systems in thermodynamic analysis. This new addition also comes with more examples and practice problems. - Informs and updates on all the latest developments in the field - Contributions from leading authorities and industry experts - A useful text for seniors and graduate students from diverse engineering and science programs to analyze some nonequilibrium, coupled, evolutionary, stochastic, and dissipative processes - Highlights fundamentals of equilibrium thermodynamics, transport processes and chemical reactions - Expands the theory of nonequilibrium thermodynamics and its use in coupled transport processes and chemical reactions in physical, chemical, and biological systems - Presents a unified analysis for transport and rate processes in various time and space scales - Discusses stochastic approaches in thermodynamic analysis including fluctuation and information theories - Has 198 fully solved examples and 287 practice problems - An Instructor Resource containing the Solution Manual can be obtained from the author: [email protected]


Non-Equilibrium Thermodynamics

Non-Equilibrium Thermodynamics

Author: S. R. De Groot

Publisher: Courier Corporation

Published: 2013-01-23

Total Pages: 532

ISBN-13: 0486153509

DOWNLOAD EBOOK

Classic monograph treats irreversible processes and phenomena of thermodynamics: non-equilibrium thermodynamics. Covers statistical foundations and applications with chapters on fluctuation theory, theory of stochastic processes, kinetic theory of gases, more.


Single Molecule Biophysics and Poisson Process Approach to Statistical Mechanics

Single Molecule Biophysics and Poisson Process Approach to Statistical Mechanics

Author: Susanta K Sarkar

Publisher: Morgan & Claypool Publishers

Published: 2016-04-01

Total Pages: 74

ISBN-13: 1681741164

DOWNLOAD EBOOK

This is an overview of single molecule physics, the study of both equilibrium and non-equilibrium properties at the single molecule level. It begins with an introduction to this fascinating science and includes a chapter on how to build the most popular instrument for single molecule biophysics, the total internal reflection fluorescence (TIRF) microscope. It concludes with the Poisson process approach to statistical mechanics, explaining how to relate the process to diverse areas and see how data analysis and error bars are integral parts of science.


Stochastic Dynamics and Energetics of Biomolecular Systems

Stochastic Dynamics and Energetics of Biomolecular Systems

Author: Artem Ryabov

Publisher: Springer

Published: 2015-11-28

Total Pages: 127

ISBN-13: 3319271881

DOWNLOAD EBOOK

This thesis both broadens and deepens our understanding of the Brownian world. It addresses new problems in diffusion theory that have recently attracted considerable attention, both from the side of nanotechnology and from the viewpoint of pure academic research. The author focusses on the difussion of interacting particles in restricted geometries and under externally controlled forces. These geometries serve, for example, to model ion transport through narrow channels in cell membranes or a Brownian particle diffusing in an optical trap, now a paradigm for both theory and experiment. The work is exceptional in obtaining explicit analytically formulated answers to such realistic, experimentally relevant questions. At the same time, with its detailed exposition of the problems and a complete set of references, it presents a clear and broadly accessible introduction to the domain. Many of the problem settings and the corresponding exact asymptotic laws are completely new in diffusion theory.


Thermodynamics and Energy Conversion

Thermodynamics and Energy Conversion

Author: Henning Struchtrup

Publisher: Springer Nature

Published: 2024

Total Pages: 712

ISBN-13: 303160556X

DOWNLOAD EBOOK

This comprehensive textbook covers engineering thermodynamics from beginner to advanced level. The presentation is concise, with material for about three full-term university courses on 700 pages, without compromising breadth or depth. First and second law of thermodynamics are developed from everyday observations with accessible and rational arguments. The laws of thermodynamics are applied to a multitude of systems and processes, from simple equilibration processes, over steam and gas power cycles, refrigerators and heat pumps, to chemical systems including fuel cells. Entropy and the second law are emphasized throughout, with focus on irreversible processes and work loss. Insightful development of theory is accompanied by detailed solutions of example problems, which teach the required technical skills while giving insight into the multitude of thermodynamic processes and applications. About 550 end-of-chapter problems highlight all important concepts and processes.


Nonequilibrium Thermodynamics

Nonequilibrium Thermodynamics

Author: Yasar Demirel

Publisher: Elsevier

Published: 2002-11-22

Total Pages: 423

ISBN-13: 0080479723

DOWNLOAD EBOOK

The book begins with a brief review of equilibrium systems and transport and rate processes, then covers the following areas: theory of nonequilibrium thermodynamics; dissipation function; entropy and exergy; analysis and case studies on using the second law of thermodynamics; economic impact of the nonequilibrium thermodynamics theory; analysis of transport and rate processes; membrane transport; dissipative structures and biological systems; and other thermodynamic approaches and extended nonequilibrium thermodynamics. Summarizes new applications of thermodynamics as tools for design and optimisation Covers second law and exergy analysis for sustainable development Promotes understanding of the coupled phenomena of natural processes


Efficiency and Power in Energy Conversion and Storage

Efficiency and Power in Energy Conversion and Storage

Author: Thomas Christen

Publisher: CRC Press

Published: 2018-10-10

Total Pages: 168

ISBN-13: 0429845251

DOWNLOAD EBOOK

This book provides fundamental theoretical concepts for the understanding, the modelling, and the optimisation of energy conversion and storage devices. The discussion is based on the general footing of efficiency-power relations and energy-power relations (Ragone plots). Efficiency and Power in Energy Conversion and Storage: Basic Physical Concepts, is written for engineers and scientists with a bachelor-degree level of knowledge in physics. It contains: An introductory motivation of the topic A review on equilibrium thermodynamics A primer to linear non-equilibrium thermodynamics and irreversible processes An introduction to endo-reversible thermodynamics The basics on the theory of Ragone plots Derivations of efficiency-power relations or Ragone plots for illustrative examples like heat engines, batteries, capacitors, kinetic energy storage devices, solar power, photodiodes, electro-motors, transformers, and flow turbines An excursion to impedance matching and the optimization of technical devices with respect to economic and related objectives