This contributed volume offers a comprehensive and detailed overview of the various aspects of long non-coding RNAs and discusses their emerging significance. Written by leading experts in the field, it motivates young researchers around the globe, and offers graduate and postgraduate students fascinating insights into genes and their regulation in eukaryotes and higher organisms.
Computational Non-coding RNA Biology is a resource for the computation of non-coding RNAs. The book covers computational methods for the identification and quantification of non-coding RNAs, including miRNAs, tasiRNAs, phasiRNAs, lariat originated circRNAs and back-spliced circRNAs, the identification of miRNA/siRNA targets, and the identification of mutations and editing sites in miRNAs. The book introduces basic ideas of computational methods, along with their detailed computational steps, a critical component in the development of high throughput sequencing technologies for identifying different classes of non-coding RNAs and predicting the possible functions of these molecules. Finding, quantifying, and visualizing non-coding RNAs from high throughput sequencing datasets at high volume is complex. Therefore, it is usually possible for biologists to complete all of the necessary steps for analysis. - Presents a comprehensive resource of computational methods for the identification and quantification of non-coding RNAs - Introduces 23 practical computational pipelines for various topics of non-coding RNAs - Provides a guide to assist biologists and other researchers dealing with complex datasets - Introduces basic computational methods and provides guidelines for their replication by researchers - Offers a solution to researchers approaching large and complex sequencing datasets
The growth of human population has increased the demand for improved yield and quality of crops and horticultural plants. However, plant productivity continues to be threatened by stresses such as heat, cold, drought, heavy metals, UV radiations, bacterial and fungal pathogens, and insect pests. Long noncoding RNAs are associated with various developmental pathways, regulatory systems, abiotic and biotic stress responses and signaling, and can provide an alternative strategy for stress management in plants. Long Noncoding RNAs in Plants: Roles in development and stress provides the most recent advances in LncRNAs, including identification, characterization, and their potential applications and uses. Introductory chapters include the basic features and brief history of development of lncRNAs studies in plants. The book then provides the knowledge about the lncRNAs in various important agricultural and horticultural crops such as cereals, legumes, fruits, vegetables, and fiber crop cotton, and their roles and applications in abiotic and biotic stress management. - Includes the latest advances and research in long noncoding RNAs in plants - Provides alternative strategies for abiotic and biotic stress management in horticultural plants and agricultural crops - Focuses on the application and uses of long noncoding RNAs
Cancer and Noncoding RNAs offers an in-depth exploration of noncoding RNAs and their role in epigenetic regulation of complex human disease, most notably cancer. In addition to examining microRNAs, this volume provides a unique evaluation of more recently profiled noncoding RNAs now implicated in carcinogenesis, including lncRNAs, piRNAs, circRNAs, and tRNAs, identifying differences in function between these noncoding RNAs and how they interact with the rest of the epigenome. A broad range of chapters from experts in the field detail epigenetic regulation of various cancer types, along with recent next generation sequencing technologies, genome-wide association studies (GWAS) and bioinformatics approaches. This book will help researchers in genomic medicine and cancer biology better understand the role of noncoding RNAs in epigenetics, aiding in the development of useful biomarkers for diagnosis, prognosis and new RNA-based disease therapies. - Provides a comprehensive analysis of noncoding RNAs implicated in epigenetic regulation of gene expression and chromatin dynamics - Educates researchers and graduate students by highlighting, in addition to miRNAs, a range of noncoding RNAs newly associated with carcinogenesis - Applies current knowledge of noncoding RNAs and epigenomics towards developing cancer and RNA-based disease therapies - Features contributions by leading experts in the field
There is now compelling evidence that the complexity of higher organisms correlates with the relative amount of non-coding RNA rather than the number of protein-coding genes. Previously dismissed as “junk DNA”, it is the non-coding regions of the genome that are responsible for regulation, facilitating complex temporal and spatial gene expression through the combinatorial effect of numerous mechanisms and interactions working together to fine-tune gene expression. The major regions involved in regulation of a particular gene are the 5’ and 3’ untranslated regions and introns. In addition, pervasive transcription of complex genomes produces a variety of non-coding transcripts that interact with these regions and contribute to regulation. This book discusses recent insights into the regulatory roles of the untranslated gene regions and non-coding RNAs in the control of complex gene expression, as well as the implications of this in terms of organism complexity and evolution.
Epigenetics in Psychiatry, Second Edition covers all major areas of psychiatry in which extensive epigenetic research has been performed, fully encompassing a diverse and maturing field, including drug addiction, bipolar disorder, epidemiology, cognitive disorders, and the uses of putative epigenetic-based psychotropic drugs. Uniquely, each chapter correlates epigenetics with relevant advances across genomics, transcriptomics, and proteomics. The book acts as a catalyst for further research in this growing area of psychiatry. This new edition has been fully revised to address recent advances in epigenetic understanding of psychiatric disorders, evoking data consortia (e.g., CommonMind, ATAC-seq), single cell analysis, and epigenome-wide association studies to empower new research. The book also examines epigenetic effects of the microbiome on psychiatric disorders, and the use of neuroimaging in studying the role of epigenetic mechanisms of gene expression. Ongoing advances in epigenetic therapy are explored in-depth. - Fully revised to discuss new areas of research across neuronal stem cells, cognitive disorders, and transgenerational epigenetics in psychiatric disease - Relates broad advances in psychiatric epigenetics to a modern understanding of the genome, transcriptome, and proteins - Catalyzes knowledge discovery in both basic epigenetic biology and epigenetic targets for drug discovery - Provides guidance in research methods and protocols, as well how to employ data from consortia, single cell analysis, and epigenome-wide association studies (EWAS) - Features chapter contributions from international leaders in the field
RNA plays a central, and until recently, somewhat underestimated role in the genetics underlying all forms of life on earth. This versatile molecule not only plays a crucial part in the synthesis of proteins from a DNA template, but is also intrinsically involved in the regulation of gene expression, and can even act as a catalyst in the form of a ribozyme. This latter property has led to the hypothesis that RNA - rather than DNA - could have played an essential part in the origin of life itself. This landmark text provides a systematic overview of the exciting and rapidly moving field of RNA biology. Key pioneering experiments, which provided the underlying evidence for what we now know, are described throughout, while the relevance of the subject to human disease is highlighted via frequent boxes. For the second edition of Molecular Biology of RNA, more introductory material has been incorporated at the beginning of the text, to aid students studying the subject for the first time. Throughout the text, new material has been included - particularly in relation to RNA binding domains, non-coding RNAs, and the connection between RNA biology and epigenetics. Finally, a new closing chapter discusses how exciting new technologies are being used to explore current topical areas of research.
The discovery of microRNA (miRNA) involvement in cancer a decade ago, and the more recent findings of long non-coding RNAs in human diseases, challenged the long-standing view that RNAs without protein-coding potential are simply “junk” transcription within the human genome. These findings evidently changed the dogma that “DNA makes RNA makes protein” by showing that RNAs themselves can be essential regulators of cellular function and play key roles in cancer development. MiRNAs are evolutionarily conserved short single-stranded transcripts of 19–24 nucleotides in length. They do not code for proteins, but change the final output of protein-coding genes by regulating their transcriptional and/or translation process. Ultraconserved genes (UCGs) are non-coding RNAs with longer length (>200bp) that are transcribed from the ultraconserved genomic region. Both miRNAs and UCGs are located within cancer-associated genomic regions (CAGRs) and can act as tumor suppressors or oncogenes. In this chapter, we present principles and concepts that have been identified over the last decade with respect to our understanding of the function of non-coding RNAs, and summarize recent findings on the role of miRNAs and UCGs in cancer development. Finally, we will conclude by discussing the translational potential of this knowledge into clinical settings such as cancer diagnosis, prognosis and treatment.