Nitric Oxide Synthase - Simple Enzyme-Complex Roles provides information on nitric oxide synthase, a biomolecule of key importance for the different biological systems, including central and peripheral nervous, cardiovascular, and reproductive systems. With recent links to the role of nitric oxide in the reactions that can impact cell signaling, and discoveries surrounding the complex role of nitric oxide synthase that have increased research attention across the fields of cell and molecular biology, physiology, pharmacology, toxicology, neuroscience, cardiology, urology, and endocrinology, this book tries to provide a comprehensive overview of biology/pathobiology of nitric oxide synthases and a perspective from possible therapeutic indication of the enzyme inhibitors.
Nitric oxide (NO) is a gas that transmits signals in an organism. Signal transmission by a gas that is produced by one cell and which penetrates through membranes and regulates the function of another cell represents an entirely new principle for signaling in biological systems. NO is a signal molecule of key importance for the cardiovascular system acting as a regulator of blood pressure and as a gatekeeper of blood flow to different organs. NO also exerts a series of other functions, such as acting a signal molecule in the nervous system and as a weapon against infections. NO is present in most living creatures and made by many different types of cells. NO research has led to new treatments for treating heart as well as lung diseases, shock, and impotence. Scientists are currently testing whether NO can be used to stop the growth of cancerous tumors, since the gas can induce programmed cell death, apoptosis. This book is the first comprehensive text on nitric oxide to cover all aspects--basic biology, chemistry, pathobiology, effects on various disease states, and therapeutic implications. - Edited by Nobel Laureate Louis J. Ignarro, editor of the Academic Press journal, Nitric Oxide - Authored by world experts on nitric oxide - Includes an overview of basic principles of biology and chemical biology - Covers principles of pathobiology, including the nervous system, cardiovascular function, pulmonary function, and immune defense
Although the function of nitric oxide in a regulatory capacity in the central and peripheral nervous system is widely recognized, the full scope of its actions and its interrelationships with other classes of regulatory molecules is just beginning to be comprehended. This volume contains a number of sophisticated and advanced methods essential for exploring the activity of nitric oxide in the brain. It will be a valuable tool for the established investigator and for those just entering the field. - Comprehensive protocols included for detection of NO and related compounds by chemical, immunohistochemical, and in situ hybridization techniques - Newly developed methods for the purification of neuronal and endothelial NO synthase, production of monoclonal antibodies to NO synthase, molecular cloning and expression of NO synthesis, and control of NO synthase gene expression - Assessment of NO-mediated functions in neurons, central nervous system, cerebral circulation, synaptic transmission, and vascular tone - Calcium imaging by confocal microscopy, evaluation of the effect of NO on iron metabolism, and detection of heme oxygenase-1 and -2 message level and distribution
Comprehensive Inorganic Chemistry II, Nine Volume Set reviews and examines topics of relevance to today’s inorganic chemists. Covering more interdisciplinary and high impact areas, Comprehensive Inorganic Chemistry II includes biological inorganic chemistry, solid state chemistry, materials chemistry, and nanoscience. The work is designed to follow on, with a different viewpoint and format, from our 1973 work, Comprehensive Inorganic Chemistry, edited by Bailar, Emeléus, Nyholm, and Trotman-Dickenson, which has received over 2,000 citations. The new work will also complement other recent Elsevier works in this area, Comprehensive Coordination Chemistry and Comprehensive Organometallic Chemistry, to form a trio of works covering the whole of modern inorganic chemistry. Chapters are designed to provide a valuable, long-standing scientific resource for both advanced students new to an area and researchers who need further background or answers to a particular problem on the elements, their compounds, or applications. Chapters are written by teams of leading experts, under the guidance of the Volume Editors and the Editors-in-Chief. The articles are written at a level that allows undergraduate students to understand the material, while providing active researchers with a ready reference resource for information in the field. The chapters will not provide basic data on the elements, which is available from many sources (and the original work), but instead concentrate on applications of the elements and their compounds. Provides a comprehensive review which serves to put many advances in perspective and allows the reader to make connections to related fields, such as: biological inorganic chemistry, materials chemistry, solid state chemistry and nanoscience Inorganic chemistry is rapidly developing, which brings about the need for a reference resource such as this that summarise recent developments and simultaneously provide background information Forms the new definitive source for researchers interested in elements and their applications; completely replacing the highly cited first edition, which published in 1973
Comprehensive and in-depth in its coverage, Atherosclerosis: Cellular, Molecular & Biochemical Mechanism and Novel Therapy reviews the recent progress in atherosclerosis research and offers cutting edge perspectives from experts in the field. Written by an international team of authors including leading physician-scientists, research experts and physicians, chapters are divided into four major sections, covering risk factors, cellular and molecular mechanisms, biochemical mechanisms and novel and future therapeutics. Atherosclerosis: Cellular, Molecular & Biochemical Mechanism and Novel Therapy analyses recent progress from both conceptual and technological perspectives, suggesting new directions for atherosclerosis research and treatment for a growing population of researchers and clinicians in cardiovascular and related fields.
The endothelium, a monolayer of endothelial cells, constitutes the inner cellular lining of the blood vessels (arteries, veins and capillaries) and the lymphatic system, and therefore is in direct contact with the blood/lymph and the circulating cells. The endothelium is a major player in the control of blood fluidity, platelet aggregation and vascular tone, a major actor in the regulation of immunology, inflammation and angiogenesis, and an important metabolizing and an endocrine organ. Endothelial cells controls vascular tone, and thereby blood flow, by synthesizing and releasing relaxing and contracting factors such as nitric oxide, metabolites of arachidonic acid via the cyclooxygenases, lipoxygenases and cytochrome P450 pathways, various peptides (endothelin, urotensin, CNP, adrenomedullin, etc.), adenosine, purines, reactive oxygen species and so on. Additionally, endothelial ectoenzymes are required steps in the generation of vasoactive hormones such as angiotensin II. An endothelial dysfunction linked to an imbalance in the synthesis and/or the release of these various endothelial factors may explain the initiation of cardiovascular pathologies (from hypertension to atherosclerosis) or their development and perpetuation. Table of Contents: Introduction / Multiple Functions of the Endothelial Cells / Calcium Signaling in Vascular Cells and Cell-to-Cell Communications / Endothelium-Dependent Regulation of Vascular Tone / Conclusion / References
Radicals for Life: the Various Forms of Nitric Oxide provides an up-to-date overview of the role of nitrosocompounds and nitrosyl-iron complexes in physiology. Nitrosocompounds can be considered as stabilised forms of nitric oxide, one of the most important regulatory molecules in physiology today. Many nitrosocompounds share some of the physiological functions of nitric oxide, and may be formed inside living organisms. This is the first book to be published that is dedicated to the role of such nitrosocompounds in physiology, with particular emphasis on the nitrosocompounds that are endogenously formed in higher organisms and humans. Points of discussion include: physical and chemical properties of the compounds, the main chemical pathways in vivo, as well as the physiological effects that have been recognised to date. Each of the nineteen chapters is written by distinguished specialists in the field, well known for their original and important contributions to the subject. Also included are results from a wide range of studies in vitro, in cell cultures, animal models and human volunteers. Examples of alternative forms of nitric oxide, with special emphasis on their protective role against widespread human diseases like atherosclerosis, Alzheimer's disease, diabetes, sexual dysfunction, and renal insufficiency to stroke and ischemia are also included. - First monograph to consider and provide an overview of endogenous nitrosocompounds and nitrosyl-iron complexes - Extensive bibliographic references, written by specialists of human physiology - Providing high scientific quality with a focus on implications for human diseases
Nutritional Pathophysiology of Obesity and Its Comorbidities: A Case-Study Approach challenges students and practitioners to understand the role of nutrients within the pathophysiology and development of disease, specifically those diseases which develop as a result of obesity. Through a case-based approach, the author presents complex clinical scenarios that require multiple treatment strategies, including targeted diet modification as an adjuvant to medical therapy. The book is divided into 9 modules and 5 appendices each of which covers aspects of obesity and its comorbidities. Within each module, a case is detailed with relevant history, laboratory and physical data, and follow-up information. Each case is followed by a resource section which delineates current understanding of the pathophysiology of the condition, as well as the actions of nutrients and food components shown to modify these processes. A "further readings" section cites current supporting clinical and basic literature as well as published guidelines. - Explores how obesity is a key player in the pathophysiology of many diseases, including diabetes mellitus, chronic renal failure, hypertension, and atherosclerosis - Integrates current understandings of the molecular mechanisms of nutrient action on the processes of disease development and treatment - Presents students and early practitioners with complex clinical scenarios through a practical case-based approach
A collection of cutting-edge techniques for measuring nitric oxide and the enzyme that produces it in biological tissues and fluids. These readily reproducible methods can be used to measure novel nitric oxide-related products such as protein nitration and nitrosation, as well as to express nitric oxide synthase in basic research and gene therapy using viral vectors.