Complex Analysis

Complex Analysis

Author: Elias M. Stein

Publisher: Princeton University Press

Published: 2010-04-22

Total Pages: 398

ISBN-13: 1400831156

DOWNLOAD EBOOK

With this second volume, we enter the intriguing world of complex analysis. From the first theorems on, the elegance and sweep of the results is evident. The starting point is the simple idea of extending a function initially given for real values of the argument to one that is defined when the argument is complex. From there, one proceeds to the main properties of holomorphic functions, whose proofs are generally short and quite illuminating: the Cauchy theorems, residues, analytic continuation, the argument principle. With this background, the reader is ready to learn a wealth of additional material connecting the subject with other areas of mathematics: the Fourier transform treated by contour integration, the zeta function and the prime number theorem, and an introduction to elliptic functions culminating in their application to combinatorics and number theory. Thoroughly developing a subject with many ramifications, while striking a careful balance between conceptual insights and the technical underpinnings of rigorous analysis, Complex Analysis will be welcomed by students of mathematics, physics, engineering and other sciences. The Princeton Lectures in Analysis represents a sustained effort to introduce the core areas of mathematical analysis while also illustrating the organic unity between them. Numerous examples and applications throughout its four planned volumes, of which Complex Analysis is the second, highlight the far-reaching consequences of certain ideas in analysis to other fields of mathematics and a variety of sciences. Stein and Shakarchi move from an introduction addressing Fourier series and integrals to in-depth considerations of complex analysis; measure and integration theory, and Hilbert spaces; and, finally, further topics such as functional analysis, distributions and elements of probability theory.


Nine Introductions in Complex Analysis - Revised Edition

Nine Introductions in Complex Analysis - Revised Edition

Author: Sanford L. Segal

Publisher: Elsevier

Published: 2007-10-10

Total Pages: 501

ISBN-13: 0080550762

DOWNLOAD EBOOK

The book addresses many topics not usually in "second course in complex analysis" texts. It also contains multiple proofs of several central results, and it has a minor historical perspective. - Proof of Bieberbach conjecture (after DeBranges) - Material on asymptotic values - Material on Natural Boundaries - First four chapters are comprehensive introduction to entire and metomorphic functions - First chapter (Riemann Mapping Theorem) takes up where "first courses" usually leave off


Complex Analysis

Complex Analysis

Author: F. Gherardelli

Publisher: Springer Science & Business Media

Published: 2011-06-04

Total Pages: 466

ISBN-13: 3642109640

DOWNLOAD EBOOK

A. Andreotti: Nine lectures on complex analysis.- J.J. Kohn: Propagations of singularities for the Cauchy-Riemann equations.- Yum-Tong Siu: The mixed case of the direct image theorem and its applications.


Guide to Cultivating Complex Analysis

Guide to Cultivating Complex Analysis

Author: Jiri Lebl

Publisher:

Published: 2020-09-16

Total Pages: 306

ISBN-13:

DOWNLOAD EBOOK

An introductory course in complex analysis for incoming graduate students. Created to teach Math 5283 at Oklahoma State University. The book has somewhat more material than could fit in a one-semester course, allowing some choices. There are also appendices on metric spaces and some basic analysis background to make for a longer and more complete course for those that have only had an introduction to basic analysis on the real line.


Five Lectures in Complex Analysis

Five Lectures in Complex Analysis

Author: Contreras Márquez Contreras

Publisher: American Mathematical Soc.

Published: 2010

Total Pages: 177

ISBN-13: 0821848097

DOWNLOAD EBOOK

This volume contains state-of-art survey papers in complex analysis based on lectures given at the second Winter School on Complex Analysis and Operator Theory held in February 2008 at the University of Sevilla, Sevilla, Spain. --


Complex Analysis

Complex Analysis

Author: Eberhard Freitag

Publisher: Springer Science & Business Media

Published: 2006-01-17

Total Pages: 553

ISBN-13: 3540308237

DOWNLOAD EBOOK

All needed notions are developed within the book: with the exception of fundamentals which are presented in introductory lectures, no other knowledge is assumed Provides a more in-depth introduction to the subject than other existing books in this area Over 400 exercises including hints for solutions are included


Complex Function Theory

Complex Function Theory

Author: Donald Sarason

Publisher: American Mathematical Society

Published: 2021-02-16

Total Pages: 177

ISBN-13: 1470463237

DOWNLOAD EBOOK

Complex Function Theory is a concise and rigorous introduction to the theory of functions of a complex variable. Written in a classical style, it is in the spirit of the books by Ahlfors and by Saks and Zygmund. Being designed for a one-semester course, it is much shorter than many of the standard texts. Sarason covers the basic material through Cauchy's theorem and applications, plus the Riemann mapping theorem. It is suitable for either an introductory graduate course or an undergraduate course for students with adequate preparation. The first edition was published with the title Notes on Complex Function Theory.


Complex Analysis through Examples and Exercises

Complex Analysis through Examples and Exercises

Author: E. Pap

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 344

ISBN-13: 9401711062

DOWNLOAD EBOOK

The book Complex Analysis through Examples and Exercises has come out from the lectures and exercises that the author held mostly for mathematician and physists . The book is an attempt to present the rat her involved subject of complex analysis through an active approach by the reader. Thus this book is a complex combination of theory and examples. Complex analysis is involved in all branches of mathematics. It often happens that the complex analysis is the shortest path for solving a problem in real circum stances. We are using the (Cauchy) integral approach and the (Weierstrass) power se ries approach . In the theory of complex analysis, on the hand one has an interplay of several mathematical disciplines, while on the other various methods, tools, and approaches. In view of that, the exposition of new notions and methods in our book is taken step by step. A minimal amount of expository theory is included at the beinning of each section, the Preliminaries, with maximum effort placed on weil selected examples and exercises capturing the essence of the material. Actually, I have divided the problems into two classes called Examples and Exercises (some of them often also contain proofs of the statements from the Preliminaries). The examples contain complete solutions and serve as a model for solving similar problems given in the exercises. The readers are left to find the solution in the exercisesj the answers, and, occasionally, some hints, are still given.