Industry 4.0 is based on the cyber-physical transformation of processes, systems and methods applied in the manufacturing sector, and on its autonomous and decentralized operation. Industry 4.0 reflects that the industrial world is at the beginning of the so-called Fourth Industrial Revolution, characterized by a massive interconnection of assets and the integration of human operators with the manufacturing environment. In this regard, data analytics and, specifically, the artificial intelligence is the vehicular technology towards the next generation of smart factories.Chapters in this book cover a diversity of current and new developments in the use of artificial intelligence on the industrial sector seen from the fourth industrial revolution point of view, namely, cyber-physical applications, artificial intelligence technologies and tools, Industrial Internet of Things and data analytics. This book contains high-quality chapters containing original research results and literature review of exceptional merit. Thus, it is in the aim of the book to contribute to the literature of the topic in this regard and let the readers know current and new trends in the use of artificial intelligence for the Industry 4.0.
This book shows a vision of the present and future of Industry 4.0 and identifies and examines the most pressing research issue in Industry 4.0. Containing the contributions of leading researchers and academics, this book includes recent publications in key areas of interest, for example: a review on the Industry 4.0: What is the Industry 4.0, the pillars of Industry 4.0, current and future trends, technologies, taxonomy, and some case studies (A.U.T.O 4.0, stabilization of digitized process). This book also provides an essential tool in the process of migration to Industry 4.0. The book is suitable as a text for graduate students and professionals in the industrial sector and general engineering areas. The book is organized into two sections: 1. Reviews 2. Case Studies Industry 4.0 is likely to play an important role in the future society. This book is a good reference on Industry 4.0 and includes some case studies. Each chapter is written by expert researchers in the sector, and the topics are broad; from the concept or definition of Industry 4.0 to a future society 5.0.
Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data
This book is intended to help management and other interested parties such as engineers, to understand the state of the art when it comes to the intersection between AI and Industry 4.0 and get them to realise the huge possibilities which can be unleashed by the intersection of these two fields. We have heard a lot about Industry 4.0, but most of the time, it focuses mainly on automation. In this book, the authors are going a step further by exploring advanced applications of Artificial Intelligence (AI) techniques, ranging from the use of deep learning algorithms in order to make predictions, up to an implementation of a full-blown Digital Triplet system. The scope of the book is to showcase what is currently brewing in the labs with the hope of migrating these technologies towards the factory floors. Chairpersons and CEOs must read these papers if they want to stay at the forefront of the game, ahead of their competition, while also saving huge sums of money in the process.
World-renowned economist Klaus Schwab, Founder and Executive Chairman of the World Economic Forum, explains that we have an opportunity to shape the fourth industrial revolution, which will fundamentally alter how we live and work. Schwab argues that this revolution is different in scale, scope and complexity from any that have come before. Characterized by a range of new technologies that are fusing the physical, digital and biological worlds, the developments are affecting all disciplines, economies, industries and governments, and even challenging ideas about what it means to be human. Artificial intelligence is already all around us, from supercomputers, drones and virtual assistants to 3D printing, DNA sequencing, smart thermostats, wearable sensors and microchips smaller than a grain of sand. But this is just the beginning: nanomaterials 200 times stronger than steel and a million times thinner than a strand of hair and the first transplant of a 3D printed liver are already in development. Imagine “smart factories” in which global systems of manufacturing are coordinated virtually, or implantable mobile phones made of biosynthetic materials. The fourth industrial revolution, says Schwab, is more significant, and its ramifications more profound, than in any prior period of human history. He outlines the key technologies driving this revolution and discusses the major impacts expected on government, business, civil society and individuals. Schwab also offers bold ideas on how to harness these changes and shape a better future—one in which technology empowers people rather than replaces them; progress serves society rather than disrupts it; and in which innovators respect moral and ethical boundaries rather than cross them. We all have the opportunity to contribute to developing new frameworks that advance progress.
The first report in a new flagship series, WIPO Technology Trends, aims to shed light on the trends in innovation in artificial intelligence since the field first developed in the 1950s.
This book aims to bring together leading academic scientists, researchers, and research scholars to exchange and share their experiences and research results on all aspects of Artificial Intelligence. The book provides a premier interdisciplinary platform to present practical challenges and adopted solutions. The book addresses the complete functional framework workflow in Artificial Intelligence technology. It explores the basic and high-level concepts and can serve as a manual for the industry for beginners and the more advanced. It covers intelligent and automated systems and its implications to the real-world, and offers data acquisition and case studies related to data-intensive technologies in AI-based applications. The book will be of interest to researchers, professionals, scientists, professors, students of computer science engineering, electronics and communications, as well as information technology.
This book provides in-depth insights into use cases implementing artificial intelligence (AI) applications at the edge. It covers new ideas, concepts, research, and innovation to enable the development and deployment of AI, the industrial internet of things (IIoT), edge computing, and digital twin technologies in industrial environments. The work is based on the research results and activities of the AI4DI project, including an overview of industrial use cases, research, technological innovation, validation, and deployment. This book’s sections build on the research, development, and innovative ideas elaborated for applications in five industries: automotive, semiconductor, industrial machinery, food and beverage, and transportation. The articles included under each of these five industrial sectors discuss AI-based methods, techniques, models, algorithms, and supporting technologies, such as IIoT, edge computing, digital twins, collaborative robots, silicon-born AI circuit concepts, neuromorphic architectures, and augmented intelligence, that are anticipating the development of Industry 5.0. Automotive applications cover use cases addressing AI-based solutions for inbound logistics and assembly process optimisation, autonomous reconfigurable battery systems, virtual AI training platforms for robot learning, autonomous mobile robotic agents, and predictive maintenance for machines on the level of a digital twin. AI-based technologies and applications in the semiconductor manufacturing industry address use cases related to AI-based failure modes and effects analysis assistants, neural networks for predicting critical 3D dimensions in MEMS inertial sensors, machine vision systems developed in the wafer inspection production line, semiconductor wafer fault classifications, automatic inspection of scanning electron microscope cross-section images for technology verification, anomaly detection on wire bond process trace data, and optical inspection. The use cases presented for machinery and industrial equipment industry applications cover topics related to wood machinery, with the perception of the surrounding environment and intelligent robot applications. AI, IIoT, and robotics solutions are highlighted for the food and beverage industry, presenting use cases addressing novel AI-based environmental monitoring; autonomous environment-aware, quality control systems for Champagne production; and production process optimisation and predictive maintenance for soybeans manufacturing. For the transportation sector, the use cases presented cover the mobility-as-a-service development of AI-based fleet management for supporting multimodal transport. This book highlights the significant technological challenges that AI application developments in industrial sectors are facing, presenting several research challenges and open issues that should guide future development for evolution towards an environment-friendly Industry 5.0. The challenges presented for AI-based applications in industrial environments include issues related to complexity, multidisciplinary and heterogeneity, convergence of AI with other technologies, energy consumption and efficiency, knowledge acquisition, reasoning with limited data, fusion of heterogeneous data, availability of reliable data sets, verification, validation, and testing for decision-making processes.
This paper discusses the impact of the rapid adoption of artificial intelligence (AI) and machine learning (ML) in the financial sector. It highlights the benefits these technologies bring in terms of financial deepening and efficiency, while raising concerns about its potential in widening the digital divide between advanced and developing economies. The paper advances the discussion on the impact of this technology by distilling and categorizing the unique risks that it could pose to the integrity and stability of the financial system, policy challenges, and potential regulatory approaches. The evolving nature of this technology and its application in finance means that the full extent of its strengths and weaknesses is yet to be fully understood. Given the risk of unexpected pitfalls, countries will need to strengthen prudential oversight.
This book constitutes the refereed proceedings of the 20th International Conference on Industrial and Engineering Applications of Artificial Intelligence and Expert Systems, IEA/AIE 2007, held in Kyoto, Japan. Coverage includes text processing, fuzzy system applications, real-world interaction, data mining, machine learning chance discovery and social networks, e-commerce, heuristic search application systems, and other applications.