"New Trends in Nuclear Collective Dynamics" emphasizes research toward understanding collective and statistical aspects of nuclear dynamics. Well-known lecturers from centers of nuclear research present reviews of recent developments. The topics covered are: -order and chaos in finite quantum systems -dissipation in heavy-ion collisions -collective motionsin warm nuclei -time-dependent mean-field theory with collision terms -nuclear fission and multi-dimensional tunneling -large-scale collective motion
This proceedings volume presents current developments in nuclear physics which are driven by new experimental facilities (e.g. radioactive ion beams, CEBAF, RHIC), as well as by cross-fertilization with astrophysics and particle physics. It starts at an introductory level and builds up to a stage where the reader can appreciate the challenges of current research fields. It is suitable for both theorists and experimentalists.
"Evolution of Dynamical Structures in Complex Systems" is dedicated to the founder of synergetics, Hermann Haken, on the occasion of his 65th birthday. This volume is an attempt to gather together and review the new results and de velopments achieved by researchers from various fields during the last few years. The contents bear witness to the great success in the development of general approaches to synergetic systems as well as remarkable progress in the more tra ditional fields of synergetics such as lasers and nonlinear optics, hydrodynamics, condensed matter physics, biology, and sociology. Since their inception, the concepts of synergetics and rigorous mathematical theories have been extended to other scientific disciplines such as medicine, artifi cial intelligence and synergetic computers, and psychology. Here too, these ideas have yielded new insights, raised unexpected questions and produced innovations in both theoretical and experimental projects. The conception of self-organization, the central theme of Hermann Haken' s scientific work, has stimulated epistemo logical studies that draw relations between synergetics and the German romantic "Naturphilosophie". It is fascinating to observe how these intuitive notions of self-organization, etc., have now evolved into a precise and holistic scientific comprehension of synergetic systems. We express our deep gratitude to Dr. Angela Lahee from Springer-Verlag for her valuable help during the preparation of this book. Stuttgart R. Frjedrjch March 1992 .4.. Wunder}jn Contents Part I General Approaches On the Principles of Synergetics By A. Wunderlin ...................................... 3 Elements of a Synergetics of Evolutionary Processes By W. Ebeling ......................... . . . . . . . . . . .. . . 42 .
This book consists of pedagogical contributions on currently viable theories of nuclear structure and critical evaluative comments on each of these theories.
In Nonlinear Dynamics and Pattern Formation in Semiconductors and Devices the contributions of the International Conference on Nonlinear Dynamics and Pattern Formation in the Natural Environment (ICPF '94) in Noordwijkerhout, held by many internationally reknown experts, are compiled. To connect the field of semiconductor physics with the theory of nonequilibrium dissipative systems, the emphasis lies on the study of localized structures, their stability and bifurcation behaviour. A point of special interest is the evolution of dynamic structures and the investigation of more complex structures arising from interactions between these structures. Possible applications of nonlinear effects and self-organization phenomena with respect to signal processing are discussed.
On June 1St 2004 the Faculty of Electrical Engineering and Information Technology of the Technische Universitat Miinchen bestowed the degree of the doctor honoris causa to Leopold B. Felsen, for extraordinary achievements in the theory of electromag netic fields. On this occasion on June 1St and 2nd 2004 at the Technische Universitat Miinchen a symposium on "Fields, Networks, Computational Methods, and Systems: A Modern View of Engineering Electrodynamics" in honor of Leopold B. Felsen was organized. The symposium topic focused on an important area of Leopold Felsen research interests and, as the title emphasizes, on a modern view of applied Electro dynamics. While the fundamental physical laws of electrodynamics are well known, research in this field is experiencing a steady continuous growth. The problem -solving approaches of, say, twenty years ago may seem now fairly obsolete since considerable progress has been made in the meantime. In this monograph we collect samples of present day state of the art in dealing with electromagnetic fields, their network theory representation, their computation and, finally, on system applications. The network formulation of field problems can improve the problem formulation and also contribute to the solution methodology. Network theory systematic approaches for circuit analysis are based on the separation of the circuit into the connection circuit and the circuit elements. Many applications in science and technology rely on computations of the electromagnetic field in either man-made or natural complex structures.
"This seminar focuses on recent achievements and new goals of nuclear structure in both experiment and theory. Several topics at the forefront of current research in this field are covered by major experts. The main themes are: exotic nuclei; the present role and perspectives of the shell model; modes of excitation in deformed and superdeformed nuclei; and nuclear astrophysics."--Publisher's website.
Collective excitations in Fermi and Bose systems are key phenomena in understanding the structure and dynamics of many-body systems with the manifestation of different statistics. This volume presents recent developments in atomic and nuclear physics which have revealed intriguing features which are under intense scrutiny by both theorists and experimentalists.
The recent rapid innovations in supercomputer technology are changing the concepts of numerical calculations employed in solving a wide variety of nuclear many-body problems. The purpose of the XVII RCNP International Symposium on Innovative Computational Methods in Nuclear Many-Body Problems (INNOCOM97) was to discuss the frontiers of various computational methods and to exchange ideas in wide fields of nuclear physics. The subjects discussed at the symposium covered almost all the areas of nuclear physics.