The volume contains a collection of original papers and surveys in various areas of Differential Equations, Control Theory and Optimization written by well-known specialists and is thus useful for PhD students and researchers in applied mathematics.
The volume contains a collection of original papers and surveys in various areas of Differential Equations, Control Theory and Optimization written by well-known specialists and is thus useful for PhD students and researchers in applied mathematics.
The Handbook of Mathematical Fluid Dynamics is a compendium of essays that provides a survey of the major topics in the subject. Each article traces developments, surveys the results of the past decade, discusses the current state of knowledge and presents major future directions and open problems. Extensive bibliographic material is provided. The book is intended to be useful both to experts in the field and to mathematicians and other scientists who wish to learn about or begin research in mathematical fluid dynamics. The Handbook illuminates an exciting subject that involves rigorous mathematical theory applied to an important physical problem, namely the motion of fluids.
This handbook covers all areas of nonlocal continuum mechanics including theoretical aspects,computational procedures, and experimental advances. The multidisciplinary scope of articles that comprise this reference are written by internationally recognized experts in the field and stand as the most-up-to-date, established knowledge base on using nonlocal continuum mechanics to characterize material behavior for advanced composites and nano-materials, as well as for engineering scale structures. The handbook is at once a comprehensive reference for academic researchers and engineers in industry concerned with nonlocal continuum mechanics for materials and structures as well as a supplement for graduate courses on a range of topics.
This book presents fundamentals and comprehensive results regarding duality for scalar, vector and set-valued optimization problems in a general setting. One chapter is exclusively consecrated to the scalar and vector Wolfe and Mond-Weir duality schemes.
This volume brings together four contributions to mathematical fluid mechanics, a classical but still highly active research field. The contributions cover not only the classical Navier-Stokes equations and Euler equations, but also some simplified models, and fluids interacting with elastic walls. The questions addressed in the lectures range from the basic problems of existence/blow-up of weak and more regular solutions, to modeling and aspects related to numerical methods. This book covers recent advances in several important areas of fluid mechanics. An output of the CIME Summer School "Progress in mathematical fluid mechanics" held in Cetraro in 2019, it offers a collection of lecture notes prepared by T. Buckmaster, (Princeton), S. Canic (UCB) P. Constantin (Princeton) and A. Kiselev (Duke). These notes will be a valuable asset for researchers and advanced graduate students in several aspects of mathematicsl fluid mechanics.
These proceedings consist of 30 selected research papers based on results presented at the 10th Balkan Conference & 1st International Symposium on Operational Research (BALCOR 2011) held in Thessaloniki, Greece, September 22-24, 2011. BALCOR is an established biennial conference attended by a large number of faculty, researchers and students from the Balkan countries but also from other European and Mediterranean countries as well. Over the past decade, the BALCOR conference has facilitated the exchange of scientific and technical information on the subject of Operations Research and related fields such as Mathematical Programming, Game Theory, Multiple Criteria Decision Analysis, Information Systems, Data Mining and more, in order to promote international scientific cooperation. The carefully selected and refereed papers present important recent developments and modern applications and will serve as excellent reference for students, researchers and practitioners in these disciplines.
This book contains 112 papers selected from about 250 submissions to the 6th World Congress on Global Optimization (WCGO 2019) which takes place on July 8–10, 2019 at University of Lorraine, Metz, France. The book covers both theoretical and algorithmic aspects of Nonconvex Optimization, as well as its applications to modeling and solving decision problems in various domains. It is composed of 10 parts, each of them deals with either the theory and/or methods in a branch of optimization such as Continuous optimization, DC Programming and DCA, Discrete optimization & Network optimization, Multiobjective programming, Optimization under uncertainty, or models and optimization methods in a specific application area including Data science, Economics & Finance, Energy & Water management, Engineering systems, Transportation, Logistics, Resource allocation & Production management. The researchers and practitioners working in Nonconvex Optimization and several application areas can find here many inspiring ideas and useful tools & techniques for their works.