New Trends in Applied Harmonic Analysis

New Trends in Applied Harmonic Analysis

Author: Akram Aldroubi

Publisher: Birkhäuser

Published: 2016-04-21

Total Pages: 356

ISBN-13: 3319278738

DOWNLOAD EBOOK

This volume is a selection of written notes corresponding to courses taught at the CIMPA School: "New Trends in Applied Harmonic Analysis: Sparse Representations, Compressed Sensing and Multifractal Analysis". New interactions between harmonic analysis and signal and image processing have seen striking development in the last 10 years, and several technological deadlocks have been solved through the resolution of deep theoretical problems in harmonic analysis. New Trends in Applied Harmonic Analysis focuses on two particularly active areas that are representative of such advances: multifractal analysis, and sparse representation and compressed sensing. The contributions are written by leaders in these areas, and cover both theoretical aspects and applications. This work should prove useful not only to PhD students and postdocs in mathematics and signal and image processing, but also to researchers working in related topics.


New Trends in Applied Harmonic Analysis, Volume 2

New Trends in Applied Harmonic Analysis, Volume 2

Author: Akram Aldroubi

Publisher: Springer Nature

Published: 2019-11-26

Total Pages: 335

ISBN-13: 3030323536

DOWNLOAD EBOOK

This contributed volume collects papers based on courses and talks given at the 2017 CIMPA school Harmonic Analysis, Geometric Measure Theory and Applications, which took place at the University of Buenos Aires in August 2017. These articles highlight recent breakthroughs in both harmonic analysis and geometric measure theory, particularly focusing on their impact on image and signal processing. The wide range of expertise present in these articles will help readers contextualize how these breakthroughs have been instrumental in resolving deep theoretical problems. Some topics covered include: Gabor frames Falconer distance problem Hausdorff dimension Sparse inequalities Fractional Brownian motion Fourier analysis in geometric measure theory This volume is ideal for applied and pure mathematicians interested in the areas of image and signal processing. Electrical engineers and statisticians studying these fields will also find this to be a valuable resource.


Four Short Courses on Harmonic Analysis

Four Short Courses on Harmonic Analysis

Author: Brigitte Forster

Publisher: Springer Science & Business Media

Published: 2010

Total Pages: 265

ISBN-13: 0817648909

DOWNLOAD EBOOK

Written by internationally renowned mathematicians, this state-of-the-art textbook examines four research directions in harmonic analysis and features some of the latest applications in the field. The work is the first one that combines spline theory, wavelets, frames, and time-frequency methods leading up to a construction of wavelets on manifolds other than Rn. Four Short Courses on Harmonic Analysis is intended as a graduate-level textbook for courses or seminars on harmonic analysis and its applications. The work is also an excellent reference or self-study guide for researchers and practitioners with diverse mathematical backgrounds working in different fields such as pure and applied mathematics, image and signal processing engineering, mathematical physics, and communication theory.


Modulation Spaces

Modulation Spaces

Author: Árpád Bényi

Publisher: Springer Nature

Published: 2020-02-22

Total Pages: 177

ISBN-13: 1071603329

DOWNLOAD EBOOK

This monograph serves as a much-needed, self-contained reference on the topic of modulation spaces. By gathering together state-of-the-art developments and previously unexplored applications, readers will be motivated to make effective use of this topic in future research. Because modulation spaces have historically only received a cursory treatment, this book will fill a gap in time-frequency analysis literature, and offer readers a convenient and timely resource. Foundational concepts and definitions in functional, harmonic, and real analysis are reviewed in the first chapter, which is then followed by introducing modulation spaces. The focus then expands to the many valuable applications of modulation spaces, such as linear and multilinear pseudodifferential operators, and dispersive partial differential equations. Because it is almost entirely self-contained, these insights will be accessible to a wide audience of interested readers. Modulation Spaces will be an ideal reference for researchers in time-frequency analysis and nonlinear partial differential equations. It will also appeal to graduate students and seasoned researchers who seek an introduction to the time-frequency analysis of nonlinear dispersive partial differential equations.


Excursions in Harmonic Analysis, Volume 6

Excursions in Harmonic Analysis, Volume 6

Author: Matthew Hirn

Publisher: Springer Nature

Published: 2021-09-01

Total Pages: 444

ISBN-13: 3030696375

DOWNLOAD EBOOK

John J. Benedetto has had a profound influence not only on the direction of harmonic analysis and its applications, but also on the entire community of people involved in the field. The chapters in this volume – compiled on the occasion of his 80th birthday – are written by leading researchers in the field and pay tribute to John’s many significant and lasting achievements. Covering a wide range of topics in harmonic analysis and related areas, these chapters are organized into four main parts: harmonic analysis, wavelets and frames, sampling and signal processing, and compressed sensing and optimization. An introductory chapter also provides a brief overview of John’s life and mathematical career. This volume will be an excellent reference for graduate students, researchers, and professionals in pure and applied mathematics, engineering, and physics.


Harmonic and Applied Analysis

Harmonic and Applied Analysis

Author: Filippo De Mari

Publisher: Springer Nature

Published: 2021-12-13

Total Pages: 316

ISBN-13: 3030866645

DOWNLOAD EBOOK

Deep connections exist between harmonic and applied analysis and the diverse yet connected topics of machine learning, data analysis, and imaging science. This volume explores these rapidly growing areas and features contributions presented at the second and third editions of the Summer Schools on Applied Harmonic Analysis, held at the University of Genova in 2017 and 2019. Each chapter offers an introduction to essential material and then demonstrates connections to more advanced research, with the aim of providing an accessible entrance for students and researchers. Topics covered include ill-posed problems; concentration inequalities; regularization and large-scale machine learning; unitarization of the radon transform on symmetric spaces; and proximal gradient methods for machine learning and imaging.


Advances in Microlocal and Time-Frequency Analysis

Advances in Microlocal and Time-Frequency Analysis

Author: Paolo Boggiatto

Publisher: Springer Nature

Published: 2020-03-03

Total Pages: 533

ISBN-13: 3030361381

DOWNLOAD EBOOK

The present volume gathers contributions to the conference Microlocal and Time-Frequency Analysis 2018 (MLTFA18), which was held at Torino University from the 2nd to the 6th of July 2018. The event was organized in honor of Professor Luigi Rodino on the occasion of his 70th birthday. The conference’s focus and the contents of the papers reflect Luigi’s various research interests in the course of his long and extremely prolific career at Torino University.


Frames and Harmonic Analysis

Frames and Harmonic Analysis

Author: Yeonhyang Kim

Publisher: American Mathematical Soc.

Published: 2018-04-27

Total Pages: 358

ISBN-13: 1470436191

DOWNLOAD EBOOK

This volume contains the proceedings of the AMS Special Sessions on Frames, Wavelets and Gabor Systems and Frames, Harmonic Analysis, and Operator Theory, held from April 16-17, 2016, at North Dakota State University in Fargo, North Dakota. The papers appearing in this volume cover frame theory and applications in three specific contexts: frame constructions and applications, Fourier and harmonic analysis, and wavelet theory.


The XFT Quadrature in Discrete Fourier Analysis

The XFT Quadrature in Discrete Fourier Analysis

Author: Rafael G. Campos

Publisher: Springer

Published: 2019-05-24

Total Pages: 245

ISBN-13: 3030134237

DOWNLOAD EBOOK

This book has two main objectives, the first of which is to extend the power of numerical Fourier analysis and to show by means of theoretical examples and numerous concrete applications that when computing discrete Fourier transforms of periodic and non periodic functions, the usual kernel matrix of the Fourier transform, the discrete Fourier transform (DFT), should be replaced by another kernel matrix, the eXtended Fourier transform (XFT), since the XFT matrix appears as a convergent quadrature of a more general transform, the fractional Fourier transform. In turn, the book’s second goal is to present the XFT matrix as a finite-dimensional transformation that links certain discrete operators in the same way that the corresponding continuous operators are related by the Fourier transform, and to show that the XFT matrix accordingly generates sequences of matrix operators that represent continuum operators, and which allow these operators to be studied from another perspective.