New Spaces in Mathematics: Volume 1

New Spaces in Mathematics: Volume 1

Author: Mathieu Anel

Publisher: Cambridge University Press

Published: 2021-04-01

Total Pages: 602

ISBN-13: 1108848214

DOWNLOAD EBOOK

After the development of manifolds and algebraic varieties in the previous century, mathematicians and physicists have continued to advance concepts of space. This book and its companion explore various new notions of space, including both formal and conceptual points of view, as presented by leading experts at the New Spaces in Mathematics and Physics workshop held at the Institut Henri Poincaré in 2015. The chapters in this volume cover a broad range of topics in mathematics, including diffeologies, synthetic differential geometry, microlocal analysis, topos theory, infinity-groupoids, homotopy type theory, category-theoretic methods in geometry, stacks, derived geometry, and noncommutative geometry. It is addressed primarily to mathematicians and mathematical physicists, but also to historians and philosophers of these disciplines.


A Hilbert Space Problem Book

A Hilbert Space Problem Book

Author: P.R. Halmos

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 385

ISBN-13: 1468493302

DOWNLOAD EBOOK

From the Preface: "This book was written for the active reader. The first part consists of problems, frequently preceded by definitions and motivation, and sometimes followed by corollaries and historical remarks... The second part, a very short one, consists of hints... The third part, the longest, consists of solutions: proofs, answers, or contructions, depending on the nature of the problem.... This is not an introduction to Hilbert space theory. Some knowledge of that subject is a prerequisite: at the very least, a study of the elements of Hilbert space theory should proceed concurrently with the reading of this book."


Modern Methods in the Calculus of Variations

Modern Methods in the Calculus of Variations

Author: Irene Fonseca

Publisher: Springer Science & Business Media

Published: 2007-08-22

Total Pages: 602

ISBN-13: 0387690069

DOWNLOAD EBOOK

This is the first of two books on methods and techniques in the calculus of variations. Contemporary arguments are used throughout the text to streamline and present in a unified way classical results, and to provide novel contributions at the forefront of the theory. This book addresses fundamental questions related to lower semicontinuity and relaxation of functionals within the unconstrained setting, mainly in L^p spaces. It prepares the ground for the second volume where the variational treatment of functionals involving fields and their derivatives will be undertaken within the framework of Sobolev spaces. This book is self-contained. All the statements are fully justified and proved, with the exception of basic results in measure theory, which may be found in any good textbook on the subject. It also contains several exercises. Therefore,it may be used both as a graduate textbook as well as a reference text for researchers in the field. Irene Fonseca is the Mellon College of Science Professor of Mathematics and is currently the Director of the Center for Nonlinear Analysis in the Department of Mathematical Sciences at Carnegie Mellon University. Her research interests lie in the areas of continuum mechanics, calculus of variations, geometric measure theory and partial differential equations. Giovanni Leoni is also a professor in the Department of Mathematical Sciences at Carnegie Mellon University. He focuses his research on calculus of variations, partial differential equations and geometric measure theory with special emphasis on applications to problems in continuum mechanics and in materials science.


Space Mathematics

Space Mathematics

Author: Bernice Kastner

Publisher: Courier Corporation

Published: 2013-10-17

Total Pages: 194

ISBN-13: 0486320839

DOWNLOAD EBOOK

Created by NASA for high school students interested in space science, this collection of worked problems covers a broad range of subjects, including mathematical aspects of NASA missions, computation and measurement, algebra, geometry, probability and statistics, exponential and logarithmic functions, trigonometry, matrix algebra, conic sections, and calculus. In addition to enhancing mathematical knowledge and skills, these problems promote an appreciation of aerospace technology and offer valuable insights into the practical uses of secondary school mathematics by professional scientists and engineers. Geared toward high school students and teachers, this volume also serves as a fine review for undergraduate science and engineering majors. Numerous figures illuminate the text, and an appendix explores the advanced topic of gravitational forces and the conic section trajectories.


Normal Topological Spaces

Normal Topological Spaces

Author: Richard A. Alo

Publisher: Cambridge University Press

Published: 2009-01-11

Total Pages: 0

ISBN-13: 9780521095303

DOWNLOAD EBOOK

This text bridges the gap existing in the field of set theoretical topology between the introductory texts and the more specialised monographs. The authors review fit developments in general topology and discuss important new areas of research and the importance of defining a methodology applicable to this active field of mathematics. The concept of normal cover and related ideas is considered in detail, as are the characterisations of normal spaces, collectionwise normal spaces and their interrelationships with paracompact spaces (and other weaker forms of compactness). Various methods of embedding subspaces are studied, before considering newer concepts such as M-spaces and their relationships with established ideas. These ideas are applied to give new results pertaining to the extension of continuous vector-valued functions. Wallman-Frink compactifications and realcompactifications are also studied to assist in unifying the ideas through the use of the more general L-filter.


Scientia Magna, Vol. 8, No. 4, 2012

Scientia Magna, Vol. 8, No. 4, 2012

Author: Zhang Wenpeng

Publisher: Infinite Study

Published:

Total Pages: 130

ISBN-13: 159973219X

DOWNLOAD EBOOK

Papers on Smarandache cyclic geometric determinant sequences, certain subclasses of analytic functions, types and sums of self-integrating functions, self-integrating polynomials in two variables, weakly generalized compactness in intuitionistic fuzzy topological spaces, signed product cordial graphs in the context of arbitrary supersubdivision, and similar topics. Contributors: M. Dragan, M. Bencze, S. S. Billing, V. Maheswari, A. Nagarajan, N. Subramanian, P. Lawrence, R. Lawrence, A. A. Mogbademu, and others.


The Rademacher System in Function Spaces

The Rademacher System in Function Spaces

Author: Sergey V. Astashkin

Publisher: Springer Nature

Published: 2020-07-27

Total Pages: 567

ISBN-13: 3030478904

DOWNLOAD EBOOK

This book presents a systematic treatment of the Rademacher system, one of the most important unifying concepts in mathematics, and includes a number of recent important and beautiful results related to the Rademacher functions. The book discusses the relationship between the properties of the Rademacher system and geometry of some function spaces. It consists of three parts, in which this system is considered respectively in Lp-spaces, in general symmetric spaces and in certain classes of non-symmetric spaces (BMO, Paley, Cesaro, Morrey). The presentation is clear and transparent, providing all main results with detailed proofs. Moreover, literary and historical comments are given at the end of each chapter. This book will be suitable for graduate students and researchers interested in functional analysis, theory of functions and geometry of Banach spaces.


Time-Frequency Analysis of Operators

Time-Frequency Analysis of Operators

Author: Elena Cordero

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2020-09-21

Total Pages: 458

ISBN-13: 311053245X

DOWNLOAD EBOOK

This authoritative text studies pseudodifferential and Fourier integral operators in the framework of time-frequency analysis, providing an elementary approach, along with applications to almost diagonalization of such operators and to the sparsity of their Gabor representations. Moreover, Gabor frames and modulation spaces are employed to study dispersive equations such as the Schrödinger, wave, and heat equations and related Strichartz problems. The first part of the book is addressed to non-experts, presenting the basics of time-frequency analysis: short time Fourier transform, Wigner distribution and other representations, function spaces and frames theory, and it can be read independently as a short text-book on this topic from graduate and under-graduate students, or scholars in other disciplines.


Handbook of Teichmüller Theory

Handbook of Teichmüller Theory

Author: Athanase Papadopoulos

Publisher: European Mathematical Society

Published: 2007

Total Pages: 876

ISBN-13: 9783037191033

DOWNLOAD EBOOK

The subject of this handbook is Teichmuller theory in a wide sense, namely the theory of geometric structures on surfaces and their moduli spaces. This includes the study of vector bundles on these moduli spaces, the study of mapping class groups, the relation with $3$-manifolds, the relation with symmetric spaces and arithmetic groups, the representation theory of fundamental groups, and applications to physics. Thus the handbook is a place where several fields of mathematics interact: Riemann surfaces, hyperbolic geometry, partial differential equations, several complex variables, algebraic geometry, algebraic topology, combinatorial topology, low-dimensional topology, theoretical physics, and others. This confluence of ideas toward a unique subject is a manifestation of the unity and harmony of mathematics. This volume contains surveys on the fundamental theory as well as surveys on applications to and relations with the fields mentioned above. It is written by leading experts in these fields. Some of the surveys contain classical material, while others present the latest developments of the theory as well as open problems. This volume is divided into the following four sections: The metric and the analytic theory The group theory The algebraic topology of mapping class groups and moduli spaces Teichmuller theory and mathematical physics This handbook is addressed to graduate students and researchers in all the fields mentioned.