New Geometric Data Structures for Collision Detection and Haptics

New Geometric Data Structures for Collision Detection and Haptics

Author: René Weller

Publisher: Springer Science & Business Media

Published: 2013-07-12

Total Pages: 248

ISBN-13: 3319010204

DOWNLOAD EBOOK

Starting with novel algorithms for optimally updating bounding volume hierarchies of objects undergoing arbitrary deformations, the author presents a new data structure that allows, for the first time, the computation of the penetration volume. The penetration volume is related to the water displacement of the overlapping region, and thus corresponds to a physically motivated and continuous force. The practicability of the approaches used is shown by realizing new applications in the field of robotics and haptics, including a user study that evaluates the influence of the degrees of freedom in complex haptic interactions. New Geometric Data Structures for Collision Detection and Haptics closes by proposing an open source benchmarking suite that evaluates both the performance and the quality of the collision response in order to guarantee a fair comparison of different collision detection algorithms. Required in the fields of computer graphics, physically-based simulations, computer animations, robotics and haptics, collision detection is a fundamental problem that arises every time we interact with virtual objects. Some of the open challenges associated with collision detection include the handling of deformable objects, the stable computation of physically-plausible contact information, and the extremely high frequencies that are required for haptic rendering. New Geometric Data Structures for Collision Detection and Haptics presents new solutions to all of these challenges, and will prove to be a valuable resource for researchers and practitioners of collision detection in the haptics, robotics and computer graphics and animation domains.


Encyclopedia of Computer Graphics and Games

Encyclopedia of Computer Graphics and Games

Author: Newton Lee

Publisher: Springer Nature

Published: 2024-01-19

Total Pages: 2150

ISBN-13: 3031231619

DOWNLOAD EBOOK

Encyclopedia of Computer Graphics and Games (ECGG) is a unique reference resource tailored to meet the needs of research and applications for industry professionals and academic communities worldwide. The ECGG covers the history, technologies, and trends of computer graphics and games. Editor Newton Lee, Institute for Education, Research, and Scholarships, Los Angeles, CA, USA Academic Co-Chairs Shlomo Dubnov, Department of Music and Computer Science and Engineering, University of California San Diego, San Diego, CA, USA Patrick C. K. Hung, University of Ontario Institute of Technology, Oshawa, ON, Canada Jaci Lee Lederman, Vincennes University, Vincennes, IN, USA Industry Co-Chairs Shuichi Kurabayashi, Cygames, Inc. & Keio University, Kanagawa, Japan Xiaomao Wu, Gritworld GmbH, Frankfurt am Main, Hessen, Germany Editorial Board Members Leigh Achterbosch, School of Science, Engineering, IT and Physical Sciences, Federation University Australia Mt Helen, Ballarat, VIC, Australia Ramazan S. Aygun, Department of Computer Science, Kennesaw State University, Marietta, GA, USA Barbaros Bostan, BUG Game Lab, Bahçeşehir University (BAU), Istanbul, Turkey Anthony L. Brooks, Aalborg University, Aalborg, Denmark Guven Catak, BUG Game Lab, Bahçeşehir University (BAU), Istanbul, Turkey Alvin Kok Chuen Chan, Cambridge Corporate University, Lucerne, Switzerland Anirban Chowdhury, Department of User Experience and Interaction Design, School of Design (SoD), University of Petroleum and Energy Studies (UPES), Dehradun, Uttarakhand, India Saverio Debernardis, Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Bari, Italy Abdennour El Rhalibi, Liverpool John Moores University, Liverpool, UK Stefano Ferretti, Department of Computer Science and Engineering, University of Bologna, Bologna, Italy Han Hu, School of Information and Electronics, Beijing Institute of Technology, Beijing, China Ms. Susan Johnston, Select Services Films Inc., Los Angeles, CA, USA Chris Joslin, Carleton University, Ottawa, Canada Sicilia Ferreira Judice, Department of Computer Science, University of Calgary, Calgary, Canada Hoshang Kolivand, Department Computer Science, Faculty of Engineering and Technology, Liverpool John Moores University, Liverpool, UK Dario Maggiorini, Department of Computer Science, University of Milan, Milan, Italy Tim McGraw, Purdue University, West Lafayette, IN, USA George Papagiannakis, ORamaVR S.A., Heraklion, Greece; FORTH-ICS, Heraklion Greece University of Crete, Heraklion, Greece Florian Richoux, Nantes Atlantic Computer Science Laboratory (LINA), Université de Nantes, Nantes, France Andrea Sanna, Dipartimento di Automatica e Informatica, Politecnico di Torino, Turin, Italy Yann Savoye, Institut fur Informatik, Innsbruck University, Innsbruck, Austria Sercan Şengün, Wonsook Kim School of Art, Illinois State University, Normal, IL, USA Ruck Thawonmas, Ritsumeikan University, Shiga, Japan Vinesh Thiruchelvam, Asia Pacific University of Technology & Innovation, Kuala Lumpur, Malaysia Rojin Vishkaie, Amazon, Seattle, WA, USA Duncan A. H. Williams, Digital Creativity Labs, Department of Computer Science, University of York, York, UK Sai-Keung Wong, National Chiao Tung University, Hsinchu, Taiwan Editorial Board Intern Sam Romershausen, Vincennes University, Vincennes, IN, USA


Pattern Recognition and Information Processing

Pattern Recognition and Information Processing

Author: Sergey V. Ablameyko

Publisher: Springer Nature

Published: 2019-11-22

Total Pages: 320

ISBN-13: 303035430X

DOWNLOAD EBOOK

This book constitutes the refereed proceedings of the 14th International Conference on Pattern Recognition and Information Processing, PRIP 2019, held in Minsk, Belarus, in May 2019. The 25 revised full papers were carefully reviewed and selected from 120 submissions. The papers of this volume are organized in topical sections on pattern recognition and image analysis; information processing and applications.


Roadmapping Extended Reality

Roadmapping Extended Reality

Author: Mariano Alcañiz

Publisher: John Wiley & Sons

Published: 2022-08-23

Total Pages: 388

ISBN-13: 111986514X

DOWNLOAD EBOOK

ROADMAPPING EXTENDED REALITY This book offers a comprehensive overview of the technological aspects of Extended Realities (XR) and discusses the main challenges and future directions in the field. This book is important and timely – XR technologies have overcome the 3 main aspects that were holding it back from mainstream adoption: cost, cables, and size. However, there are many aspects of XR technologies that are now going to be explored and developed that still need urgent research in terms of security, privacy, health and safety, long-term effects, addiction risks, and age-related developmental concerns, and the aim of the book is to inform all readers of these open issues and challenges. There are currently a great number of interdisciplinary researchers and developers working in the XR R&D field. Recently, XR technologies moved from the Gartner Hype Cycle onto the Plateau of Productivity on the Gartner Hype Cycle signaling that the fundamental XR technologies are now deemed mature technologies and ready for deployment in a wide variety of application areas. Corroborated by the fact that XR technologies are part of the future Metaverse, a concept that went rapidly mainstream during the time of writing of this book. Roadmapping Extended Reality is divided into two parts: (1) fundamentals and (2) applications. The first part covers the main technological aspects of XR. The chapters in this section review and discuss relevant fundamental concepts of XR, the actual state-of-the-art, and future challenges. The second part of the book focuses on covering a wide range of applications of XR including a future roadmap. All in all, the book offers a snapshot of the state-of-the-art in XR and addresses the needs of a multidisciplinary audience working in both academia and the industry, as well as stakeholders at government agencies and non-profit organizations. Audience This book is aimed at academic and industrial developers, exploring and developing applications in the XR, VR, AR, AI, smart IoT, 4th Industrial Revolution space, including those that are solving technology requirements, human factors, evaluation methodology advances, and ROI investigations.


The Algorithm Design Manual

The Algorithm Design Manual

Author: Steven S. Skiena

Publisher: Springer Nature

Published: 2020-10-05

Total Pages: 793

ISBN-13: 3030542564

DOWNLOAD EBOOK

"My absolute favorite for this kind of interview preparation is Steven Skiena’s The Algorithm Design Manual. More than any other book it helped me understand just how astonishingly commonplace ... graph problems are -- they should be part of every working programmer’s toolkit. The book also covers basic data structures and sorting algorithms, which is a nice bonus. ... every 1 – pager has a simple picture, making it easy to remember. This is a great way to learn how to identify hundreds of problem types." (Steve Yegge, Get that Job at Google) "Steven Skiena’s Algorithm Design Manual retains its title as the best and most comprehensive practical algorithm guide to help identify and solve problems. ... Every programmer should read this book, and anyone working in the field should keep it close to hand. ... This is the best investment ... a programmer or aspiring programmer can make." (Harold Thimbleby, Times Higher Education) "It is wonderful to open to a random spot and discover an interesting algorithm. This is the only textbook I felt compelled to bring with me out of my student days.... The color really adds a lot of energy to the new edition of the book!" (Cory Bart, University of Delaware) "The is the most approachable book on algorithms I have." (Megan Squire, Elon University) --- This newly expanded and updated third edition of the best-selling classic continues to take the "mystery" out of designing algorithms, and analyzing their efficiency. It serves as the primary textbook of choice for algorithm design courses and interview self-study, while maintaining its status as the premier practical reference guide to algorithms for programmers, researchers, and students. The reader-friendly Algorithm Design Manual provides straightforward access to combinatorial algorithms technology, stressing design over analysis. The first part, Practical Algorithm Design, provides accessible instruction on methods for designing and analyzing computer algorithms. The second part, the Hitchhiker's Guide to Algorithms, is intended for browsing and reference, and comprises the catalog of algorithmic resources, implementations, and an extensive bibliography. NEW to the third edition: -- New and expanded coverage of randomized algorithms, hashing, divide and conquer, approximation algorithms, and quantum computing -- Provides full online support for lecturers, including an improved website component with lecture slides and videos -- Full color illustrations and code instantly clarify difficult concepts -- Includes several new "war stories" relating experiences from real-world applications -- Over 100 new problems, including programming-challenge problems from LeetCode and Hackerrank. -- Provides up-to-date links leading to the best implementations available in C, C++, and Java Additional Learning Tools: -- Contains a unique catalog identifying the 75 algorithmic problems that arise most often in practice, leading the reader down the right path to solve them -- Exercises include "job interview problems" from major software companies -- Highlighted "take home lessons" emphasize essential concepts -- The "no theorem-proof" style provides a uniquely accessible and intuitive approach to a challenging subject -- Many algorithms are presented with actual code (written in C) -- Provides comprehensive references to both survey articles and the primary literature Written by a well-known algorithms researcher who received the IEEE Computer Science and Engineering Teaching Award, this substantially enhanced third edition of The Algorithm Design Manual is an essential learning tool for students and professionals needed a solid grounding in algorithms. Professor Skiena is also the author of the popular Springer texts, The Data Science Design Manual and Programming Challenges: The Programming Contest Training Manual.


Computer Vision – ECCV 2020

Computer Vision – ECCV 2020

Author: Andrea Vedaldi

Publisher: Springer Nature

Published: 2020-11-06

Total Pages: 789

ISBN-13: 3030586073

DOWNLOAD EBOOK

The 30-volume set, comprising the LNCS books 12346 until 12375, constitutes the refereed proceedings of the 16th European Conference on Computer Vision, ECCV 2020, which was planned to be held in Glasgow, UK, during August 23-28, 2020. The conference was held virtually due to the COVID-19 pandemic. The 1360 revised papers presented in these proceedings were carefully reviewed and selected from a total of 5025 submissions. The papers deal with topics such as computer vision; machine learning; deep neural networks; reinforcement learning; object recognition; image classification; image processing; object detection; semantic segmentation; human pose estimation; 3d reconstruction; stereo vision; computational photography; neural networks; image coding; image reconstruction; object recognition; motion estimation.


Virtual Realities

Virtual Realities

Author: Sabine Coquillart

Publisher: Springer Science & Business Media

Published: 2010-11-26

Total Pages: 259

ISBN-13: 3211991786

DOWNLOAD EBOOK

The articles by well-known international experts intend to facilitate more elaborate expositions of the research presented at the seminar, and to collect and document the results of the various discussions, including ideas and open problems that were identified. Correspondingly the book will consist of two parts. Part I will consist of extended articles describing research presented at the seminar. This will include papers on tracking, motion capture, displays, cloth simulation, and applications. Part II will consist of articles that capture the results of breakout discussions, describe visions, or advocate particular positions. This will include discussions about system latency, 3D interaction, haptic interfaces, social gaming, perceptual issues, and the fictional "Holodeck".


High Fidelity Haptic Rendering

High Fidelity Haptic Rendering

Author: Miguel Otaduy

Publisher: Springer Nature

Published: 2022-05-31

Total Pages: 103

ISBN-13: 3031795199

DOWNLOAD EBOOK

The human haptic system, among all senses, provides unique and bidirectional communication between humans and their physical environment. Yet, to date, most human-computer interactive systems have focused primarily on the graphical rendering of visual information and, to a lesser extent, on the display of auditory information. Extending the frontier of visual computing, haptic interfaces, or force feedback devices, have the potential to increase the quality of human-computer interaction by accommodating the sense of touch. They provide an attractive augmentation to visual display and enhance the level of understanding of complex data sets. They have been effectively used for a number of applications including molecular docking, manipulation of nano-materials, surgical training, virtual prototyping, and digital sculpting. Compared with visual and auditory display, haptic rendering has extremely demanding computational requirements. In order to maintain a stable system while displaying smooth and realistic forces and torques, high haptic update rates in the range of 500-1000 Hz or more are typically used. Haptics present many new challenges to researchers and developers in computer graphics and interactive techniques. Some of the critical issues include the development of novel data structures to encode shape and material properties, as well as new techniques for geometry processing, data analysis, physical modeling, and haptic visualization. This synthesis examines some of the latest developments on haptic rendering, while looking forward to exciting future research in this area. It presents novel haptic rendering algorithms that take advantage of the human haptic sensory modality. Specifically it discusses different rendering techniques for various geometric representations (e.g. point-based, polygonal, multiresolution, distance fields, etc), as well as textured surfaces. It also shows how psychophysics of touch can provide the foundational design guidelines for developing perceptually driven force models and concludes with possible applications and issues to consider in future algorithmic design, validating rendering techniques, and evaluating haptic interfaces.


Haptic Interaction with Deformable Objects

Haptic Interaction with Deformable Objects

Author: Guido Böttcher

Publisher: Springer Science & Business Media

Published: 2011-08-26

Total Pages: 148

ISBN-13: 0857299352

DOWNLOAD EBOOK

The focus from most Virtual Reality (VR) systems lies mainly on the visual immersion of the user. But the emphasis only on the visual perception is insufficient for some applications as the user is limited in his interactions within the VR. Therefore the textbook presents the principles and theoretical background to develop a VR system that is able to create a link between physical simulations and haptic rendering which requires update rates of 1\,kHz for the force feedback. Special attention is given to the modeling and computation of contact forces in a two-finger grasp of textiles. Addressing further the perception of small scale surface properties like roughness, novel algorithms are presented that are not only able to consider the highly dynamic behaviour of textiles but also capable of computing the small forces needed for the tactile rendering at the contact point. Final analysis of the entire VR system is being made showing the problems and the solutions found in the work


Engineering Haptic Devices

Engineering Haptic Devices

Author: Christian Hatzfeld

Publisher: Springer

Published: 2014-09-15

Total Pages: 596

ISBN-13: 1447165187

DOWNLOAD EBOOK

In this greatly reworked second edition of Engineering Haptic Devices the psychophysic content has been thoroughly revised and updated. Chapters on haptic interaction, system structures and design methodology were rewritten from scratch to include further basic principles and recent findings. New chapters on the evaluation of haptic systems and the design of three exemplary haptic systems from science and industry have been added. This book was written for students and engineers that are faced with the development of a task-specific haptic system. It is a reference book for the basics of haptic interaction and existing haptic systems and methods as well as an excellent source of information for technical questions arising in the design process of systems and components. Divided into two parts, part 1 contains typical application areas of haptic systems and a thorough analysis of haptics as an interaction modality. The role of the user in the design of haptic systems is discussed and relevant design and development stages are outlined. Part II presents all relevant problems in the design of haptic systems including general system and control structures, kinematic structures, actuator principles and sensors for force and kinematic measures. Further chapters examine interfaces and software development for virtual reality simulations.