New Fundamental Technologies in Data Mining

New Fundamental Technologies in Data Mining

Author: Kimito Funatsu

Publisher: BoD – Books on Demand

Published: 2011-01-21

Total Pages: 600

ISBN-13: 9533075473

DOWNLOAD EBOOK

The progress of data mining technology and large public popularity establish a need for a comprehensive text on the subject. The series of books entitled by "Data Mining" address the need by presenting in-depth description of novel mining algorithms and many useful applications. In addition to understanding each section deeply, the two books present useful hints and strategies to solving problems in the following chapters. The contributing authors have highlighted many future research directions that will foster multi-disciplinary collaborations and hence will lead to significant development in the field of data mining.


Fundamentals of Data Mining in Genomics and Proteomics

Fundamentals of Data Mining in Genomics and Proteomics

Author: Werner Dubitzky

Publisher: Springer Science & Business Media

Published: 2007-04-13

Total Pages: 300

ISBN-13: 0387475095

DOWNLOAD EBOOK

This book presents state-of-the-art analytical methods from statistics and data mining for the analysis of high-throughput data from genomics and proteomics. It adopts an approach focusing on concepts and applications and presents key analytical techniques for the analysis of genomics and proteomics data by detailing their underlying principles, merits and limitations.


Data Mining

Data Mining

Author: Ian H. Witten

Publisher: Elsevier

Published: 2011-02-03

Total Pages: 665

ISBN-13: 0080890369

DOWNLOAD EBOOK

Data Mining: Practical Machine Learning Tools and Techniques, Third Edition, offers a thorough grounding in machine learning concepts as well as practical advice on applying machine learning tools and techniques in real-world data mining situations. This highly anticipated third edition of the most acclaimed work on data mining and machine learning will teach you everything you need to know about preparing inputs, interpreting outputs, evaluating results, and the algorithmic methods at the heart of successful data mining. Thorough updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including new material on Data Transformations, Ensemble Learning, Massive Data Sets, Multi-instance Learning, plus a new version of the popular Weka machine learning software developed by the authors. Witten, Frank, and Hall include both tried-and-true techniques of today as well as methods at the leading edge of contemporary research. The book is targeted at information systems practitioners, programmers, consultants, developers, information technology managers, specification writers, data analysts, data modelers, database R&D professionals, data warehouse engineers, data mining professionals. The book will also be useful for professors and students of upper-level undergraduate and graduate-level data mining and machine learning courses who want to incorporate data mining as part of their data management knowledge base and expertise. - Provides a thorough grounding in machine learning concepts as well as practical advice on applying the tools and techniques to your data mining projects - Offers concrete tips and techniques for performance improvement that work by transforming the input or output in machine learning methods - Includes downloadable Weka software toolkit, a collection of machine learning algorithms for data mining tasks—in an updated, interactive interface. Algorithms in toolkit cover: data pre-processing, classification, regression, clustering, association rules, visualization


Introduction to Algorithms for Data Mining and Machine Learning

Introduction to Algorithms for Data Mining and Machine Learning

Author: Xin-She Yang

Publisher: Academic Press

Published: 2019-06-17

Total Pages: 190

ISBN-13: 0128172177

DOWNLOAD EBOOK

Introduction to Algorithms for Data Mining and Machine Learning introduces the essential ideas behind all key algorithms and techniques for data mining and machine learning, along with optimization techniques. Its strong formal mathematical approach, well selected examples, and practical software recommendations help readers develop confidence in their data modeling skills so they can process and interpret data for classification, clustering, curve-fitting and predictions. Masterfully balancing theory and practice, it is especially useful for those who need relevant, well explained, but not rigorous (proofs based) background theory and clear guidelines for working with big data. Presents an informal, theorem-free approach with concise, compact coverage of all fundamental topics Includes worked examples that help users increase confidence in their understanding of key algorithms, thus encouraging self-study Provides algorithms and techniques that can be implemented in any programming language, with each chapter including notes about relevant software packages


Data Mining: Concepts and Techniques

Data Mining: Concepts and Techniques

Author: Jiawei Han

Publisher: Elsevier

Published: 2011-06-09

Total Pages: 740

ISBN-13: 0123814804

DOWNLOAD EBOOK

Data Mining: Concepts and Techniques provides the concepts and techniques in processing gathered data or information, which will be used in various applications. Specifically, it explains data mining and the tools used in discovering knowledge from the collected data. This book is referred as the knowledge discovery from data (KDD). It focuses on the feasibility, usefulness, effectiveness, and scalability of techniques of large data sets. After describing data mining, this edition explains the methods of knowing, preprocessing, processing, and warehousing data. It then presents information about data warehouses, online analytical processing (OLAP), and data cube technology. Then, the methods involved in mining frequent patterns, associations, and correlations for large data sets are described. The book details the methods for data classification and introduces the concepts and methods for data clustering. The remaining chapters discuss the outlier detection and the trends, applications, and research frontiers in data mining. This book is intended for Computer Science students, application developers, business professionals, and researchers who seek information on data mining. - Presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects - Addresses advanced topics such as mining object-relational databases, spatial databases, multimedia databases, time-series databases, text databases, the World Wide Web, and applications in several fields - Provides a comprehensive, practical look at the concepts and techniques you need to get the most out of your data


Principles of Data Mining

Principles of Data Mining

Author: David J. Hand

Publisher: MIT Press

Published: 2001-08-17

Total Pages: 594

ISBN-13: 9780262082907

DOWNLOAD EBOOK

The first truly interdisciplinary text on data mining, blending the contributions of information science, computer science, and statistics. The growing interest in data mining is motivated by a common problem across disciplines: how does one store, access, model, and ultimately describe and understand very large data sets? Historically, different aspects of data mining have been addressed independently by different disciplines. This is the first truly interdisciplinary text on data mining, blending the contributions of information science, computer science, and statistics. The book consists of three sections. The first, foundations, provides a tutorial overview of the principles underlying data mining algorithms and their application. The presentation emphasizes intuition rather than rigor. The second section, data mining algorithms, shows how algorithms are constructed to solve specific problems in a principled manner. The algorithms covered include trees and rules for classification and regression, association rules, belief networks, classical statistical models, nonlinear models such as neural networks, and local "memory-based" models. The third section shows how all of the preceding analysis fits together when applied to real-world data mining problems. Topics include the role of metadata, how to handle missing data, and data preprocessing.


Fundamentals of Image Data Mining

Fundamentals of Image Data Mining

Author: Dengsheng Zhang

Publisher: Springer Nature

Published: 2021-06-25

Total Pages: 383

ISBN-13: 3030692515

DOWNLOAD EBOOK

This unique and useful textbook presents a comprehensive review of the essentials of image data mining, and the latest cutting-edge techniques used in the field. The coverage spans all aspects of image analysis and understanding, offering deep insights into areas of feature extraction, machine learning, and image retrieval. The theoretical coverage is supported by practical mathematical models and algorithms, utilizing data from real-world examples and experiments. Topics and features: Describes essential tools for image mining, covering Fourier transforms, Gabor filters, and contemporary wavelet transforms Develops many new exercises (most with MATLAB code and instructions) Includes review summaries at the end of each chapter Analyses state-of-the-art models, algorithms, and procedures for image mining Integrates new sections on pre-processing, discrete cosine transform, and statistical inference and testing Demonstrates how features like color, texture, and shape can be mined or extracted for image representation Applies powerful classification approaches: Bayesian classification, support vector machines, neural networks, and decision trees Implements imaging techniques for indexing, ranking, and presentation, as well as database visualization This easy-to-follow, award-winning book illuminates how concepts from fundamental and advanced mathematics can be applied to solve a broad range of image data mining problems encountered by students and researchers of computer science. Students of mathematics and other scientific disciplines will also benefit from the applications and solutions described in the text, together with the hands-on exercises that enable the reader to gain first-hand experience of computing.


Data Mining

Data Mining

Author: Mehmed Kantardzic

Publisher: John Wiley & Sons

Published: 2011-08-16

Total Pages: 554

ISBN-13: 0470890452

DOWNLOAD EBOOK

This book reviews state-of-the-art methodologies and techniques for analyzing enormous quantities of raw data in high-dimensional data spaces, to extract new information for decision making. The goal of this book is to provide a single introductory source, organized in a systematic way, in which we could direct the readers in analysis of large data sets, through the explanation of basic concepts, models and methodologies developed in recent decades. If you are an instructor or professor and would like to obtain instructor’s materials, please visit http://booksupport.wiley.com If you are an instructor or professor and would like to obtain a solutions manual, please send an email to: [email protected]


Information System Development

Information System Development

Author: María José Escalona

Publisher: Springer

Published: 2014-07-23

Total Pages: 536

ISBN-13: 3319072153

DOWNLOAD EBOOK

Information System Development—Improving Enterprise Communication are the collected proceedings of the 22nd International Conference on Information Systems Development: Improving Enterprise Communication—ISD 2013 Conference, held in Seville, Spain. It follows in the tradition of previous conferences in the series in exploring the connections between industry, research and education. These proceedings represent ongoing reflections within the academic community on established information systems topics and emerging concepts, approaches and ideas. It is hoped that the papers herein contribute towards disseminating research and improving practice. The conference tracks highlighted at the 22nd International Conference on Information Systems Development (ISD 2013) were: Applications Data and Ontologies End Users Enterprise Evolution Industrial cases in ISD Intelligent Business Process Management Model Driven Engineering in ISD New Technologies Process Management Quality


Toward Information Justice

Toward Information Justice

Author: Jeffrey Alan Johnson

Publisher: Springer

Published: 2018-01-09

Total Pages: 184

ISBN-13: 3319708945

DOWNLOAD EBOOK

This book presents a theory of information justice that subsumes the question of control and relates it to other issues that influence just social outcomes. ​Data does not exist by nature. Bureaucratic societies must provide standardized inputs for governing algorithms, a problem that can be understood as one of legibility. This requires, though, converting what we know about social objects and actions into data, narrowing the many possible representations of the objects to a definitive one using a series of translations. Information thus exists within a nexus of problems, data, models, and actions that the social actors constructing the data bring to it. This opens information to analysis from social and moral perspectives, while the scientistic view leaves us blind to the gains from such analysis—especially to the ways that embedded values and assumptions promote injustice. Toward Information Justice answers a key question for the 21st Century: how can an information-driven society be just? Many of those concerned with the ethics of data focus on control over data, and argue that if data is only controlled by the right people then just outcomes will emerge. There are serious problems with this control metaparadigm, however, especially related to the initial creation of data and prerequisites for its use. This text is suitable for academics in the fields of information ethics, political theory, philosophy of technology, and science and technology studies, as well as policy professionals who rely on data to reach increasingly problematic conclusions about courses of action.​