New Frontiers and Applications of Synthetic Biology presents a collection of chapters from eminent synthetic biologists across the globe who have established experience and expertise working with synthetic biology. This book offers several important areas of synthetic biology which allow us to read and understand easily. It covers the introduction of synthetic biology and design of promoter, new DNA synthesis and sequencing technology, genome assembly, minimal cells, small synthetic RNA, directed evolution, protein engineering, computational tools, de novo synthesis, phage engineering, a sensor for microorganisms, next-generation diagnostic tools, CRISPR-Cas systems, and more. This book is a good source for not only researchers in designing synthetic biology, but also for researchers, students, synthetic biologists, metabolic engineers, genome engineers, clinicians, industrialists, stakeholders and policymakers interested in harnessing the potential of synthetic biology in many areas. - Offers basic understanding and knowledge in several aspects of synthetic biology - Covers state-of-the-art tools and technologies of synthetic biology, including promoter design, DNA synthesis, DNA sequencing, genome design, directed evolution, protein engineering, computational tools, phage design, CRISPR-Cas systems, and more - Discusses the applications of synthetic biology for smart drugs, vaccines, therapeutics, drug discovery, self-assembled materials, cell free systems, microfluidics, and more
The Frontiers in Chemistry Editorial Office team are delighted to present the inaugural “Frontiers in Chemistry: Rising Stars” article collection, showcasing the high-quality work of internationally recognized researchers in the early stages of their independent careers. All Rising Star researchers featured within this collection were individually nominated by the Journal’s Chief Editors in recognition of their potential to influence the future directions in their respective fields. The work presented here highlights the diversity of research performed across the entire breadth of the chemical sciences, and presents advances in theory, experiment and methodology with applications to compelling problems. This Editorial features the corresponding author(s) of each paper published within this important collection, ordered by section alphabetically, highlighting them as the great researchers of the future. The Frontiers in Chemistry Editorial Office team would like to thank each researcher who contributed their work to this collection. We would also like to personally thank our Chief Editors for their exemplary leadership of this article collection; their strong support and passion for this important, community-driven collection has ensured its success and global impact. Laurent Mathey, PhD Journal Development Manager
In the next 10 to 15 years, chemical engineers have the potential to affect every aspect of American life and promote the scientific and industrial leadership of the United States. Frontiers in Chemical Engineering explores the opportunities available and gives a blueprint for turning a multitude of promising visions into realities. It also examines the likely changes in how chemical engineers will be educated and take their place in the profession, and presents new research opportunities.
New Frontiers in Astrobiology presents a simple and concise overview of the emerging field of astrobiology. Astrobiology studies the evolution, origin, and future of life on Earth and beyond. This book provides a brief overview of the current research and future status of this fascinating field. The book covers a wide range of topics from the history of astrobiology, the big bang, prebiotic chemistry, theories of the origin of life, extreme environments on Earth, and the quest for intelligent life in space. Currently, there is a critical gap in knowledge related to the future scope of astrobiology and its applications in science and society. The hallmark of the book is that it takes critical perspectives to analyze the new frontiers in astrobiology post Mars 2020/ExoMars missions that encompass the latestdevelopments in the detection of biosignatures and habitability beyond our Solar System (exomoons, exoplanets). The book will be a valuable resource for students, researchers, and scientists who seek greater insights into understanding the current status and future of astrobiology. - Explores the background and historical developments in astrobiology - Provides concise cutting-edge reviews on fundamental questions on origin and distribution of life on Earth, habitability beyond Earth, and future of life on Earth - Integrates contemporary and critical views in new frontiers in astrobiology
The extraordinary potential of fluorine-containing molecules in medicinal chemistry and chemical biology has been recognized by researchers outside of the traditional fluorine chemistry field, and thus a new wave of fluorine chemistry is rapidly expanding its biomedical frontiers. With several of the best selling drugs in the world crucially containing fluorine atoms, the incorporation of fluorine to drug leads has become an essential practice in biomedical research, especially for drug design and discovery as well as development. Focusing on the unique and significant roles that fluorine plays in medicinal chemistry and chemical biology, this book reviews recent advances and future prospects in this rapidly developing field. Topics covered include: Discovery and development of fluorine containing drugs and drug candidates. New and efficient synthetic methods for medicinal chemistry and the optimisation of fluorine-containing drug candidates. Structural and chemical biology of fluorinated amino acids and peptides. Fluorine labels as probes in metabolic study, protein engineering and clinical diagnosis. Applications of 19F NMR spectroscopy in biomedical research. An appendix presents an invaluable index of all fluorine-containing drugs that have been approved by the US Food and Drug Administration, including information on structure and pharmaceutical action. Fluorine in Medicinal Chemistry and Chemical Biology will serve as an excellent reference source for graduate students as well as academic and industrial researchers who want to take advantage of fluorine in biomedical research.
This book presents recent advances in and perspectives on the use of organoselenium compounds, primarily highlighting the new frontiers in the field of Green Chemistry, their therapeutic and biological relevance and new materials. Throughout its 200 pages, readers will find an updated and comprehensive review of new aspects of organoselenium chemistry and biochemistry. Fully referenced and written in an easy to read style, it offers readers a primary resource for including organoselenium derivatives in their projects. This book will be of interest to specialists, students and researchers involved in a broad range of fields, from synthetic green chemistry to medicinal chemistry and the chemistry of natural products. The connection between organoselenium compounds and green chemistry, despite having only recently emerged, is one of the subjects of this book. The first chapter highlights the use of Se-containing molecules as reagents and catalysts in new green protocols to access important organic transformations. The book provides a wealth of examples of bioactive Se-containing molecules, especially focusing on those with potential therapeutic uses. The second chapter focuses on the state of the art concerning the role of organoselenium compounds as antioxidants, GPx mimics, and derivatives endowed with different bioactive properties. “Organoselenium in nature” is the title of the third chapter, which equips readers with essential information on the main natural organoselenium compounds and where they are found. Selected aspects of the metabolism of selenium in plants and microorganisms are also discussed. In closing, the book includes a chapter dedicated to recent advances concerning the nonbonding interactions between organochalcogen compounds. This is currently a hot topic in selenium chemistry and biochemistry, and here readers will find key insights into the chalcogen bond and its role in the biological activity of organoselenium compounds.
Drug discovery and development process aims to make available medications that are safe and effective in improving the length and quality of life and relieving pain and suffering. However, the process is very complex, time consuming, resource intensive, requiring multi-disciplinary expertise and innovative approaches. There is a growing urgency to identify and develop more effective, efficient, and expedient ways to bring safe and effective products to the market. The drug discovery and development process relies on the utilization of relevant and robust tools, methods, models, and validated biomarkers that are predictive of clinical effects in terms of diagnosis, prevention, therapy, and prognosis. There is a growing emphasis on translational research, a bidirectional bench to the bedside approach, in an effort to improve the process efficiency and the need for further innovations. The authors in the book discuss the current and evolving state of drug discovery and development.
More than a quarter of pregnancies worldwide are unintended. Between 1995 and 2000, nearly 700,000 women died and many more experienced illness, injury, and disability as a result of unintended pregnancy. Children born from unplanned conception are at greater risk of low birth weight, of being abused, and of not receiving sufficient resources for healthy development. A wider range of contraceptive options is needed to address the changing needs of the populations of the world across the reproductive life cycle, but this unmet need has not been a major priority of the research community and pharmaceutical industry. New Frontiers in Contraceptive Research: A Blueprint for Action, a new report from the Institute of Medicine of the National Academies, identifies priority areas for research to develop new contraceptives. The report highlights new technologies and approaches to biomedical research, including genomics and proteomics, which hold particular promise for developing new products. It also identifies impediments to drug development that must be addressed. Research sponsors, both public and private, will find topics of interest among the recommendations, which are diverse but interconnected and important for improving the range of contraceptive products, their efficacy, and their acceptability.
Frontiers and Advances in Molecular Spectroscopy once again brings together the most eminent scientists from around the world to describe their work at the cutting-edge of molecular spectroscopy. Much of what we know about atoms, molecules and the nature of matter has been obtained using spectroscopy over the last one hundred years or so. Going far beyond the topics discussed in Jaan Laane's earlier book on the subject, these chapters describe new methodologies and applications, instrumental developments and theory, which are taking spectroscopy into still new frontiers. The robust range of topics once again demonstrates the wide utility of spectroscopic techniques. New topics include ultrafast spectroscopy of the transition state, SERS/far-uv spectroscopy, femtosecond coherent anti-Stokes Raman spectroscopy, high-resolution laser induced fluorescence spectroscopy, Raman spectroscopy and biosensors, vibrational optical activity, ultrafast two-dimensional spectroscopy, biology with x-ray lasers, isomerization dynamics and hydrogen bonding, single molecule imaging, spectra of intermediates, matrix isolation spectroscopy and more. - Covers spectroscopic investigations on the cutting edge of science - Written and edited by leading experts in their respective fields - Allows researchers to access a broad range of essential modern spectroscopy content from a single source rather than wading through hundreds of scattered journal articles