This book provides a comprehensive review and update of the newest diagnostic and therapeutic tools in paediatric neurology. Special attention is paid to neuroradiologic and neurophysiologic techniques and to their clinical application, with guidelines and suggestions on how an integrated approach can be used to reach diagnosis. Some of the chapters focus on the new-born infant and the first years of life, highlighting the most appropriate MRI, clinical, and EEG techniques to investigate the developing brain. State-of-the-art techniques used in older children are also presented that afford a better understanding of the correlation between function and brain structure in young patients with brain lesions. New genetic discoveries are particularly emphasised, as is the possibility of performing accurate phenotype -- genotype correla-tion by combining the latest methods, such as muscle MRI and genetic information, in order to identify MRI patterns associated with specific genetic disorders. In all chapters an effort is made to combine technical data with clinical applications in order to show, when possible, how these novel procedures can also be used in rehabilitation. This book will be of interest to paediatricians, paediatric neuro-logists, neonatologists, and to all those who are involved in the diagnosis and care of children with neurologic disabilities.
Getting the right diagnosis is a key aspect of health care - it provides an explanation of a patient's health problem and informs subsequent health care decisions. The diagnostic process is a complex, collaborative activity that involves clinical reasoning and information gathering to determine a patient's health problem. According to Improving Diagnosis in Health Care, diagnostic errors-inaccurate or delayed diagnoses-persist throughout all settings of care and continue to harm an unacceptable number of patients. It is likely that most people will experience at least one diagnostic error in their lifetime, sometimes with devastating consequences. Diagnostic errors may cause harm to patients by preventing or delaying appropriate treatment, providing unnecessary or harmful treatment, or resulting in psychological or financial repercussions. The committee concluded that improving the diagnostic process is not only possible, but also represents a moral, professional, and public health imperative. Improving Diagnosis in Health Care, a continuation of the landmark Institute of Medicine reports To Err Is Human (2000) and Crossing the Quality Chasm (2001), finds that diagnosis-and, in particular, the occurrence of diagnostic errorsâ€"has been largely unappreciated in efforts to improve the quality and safety of health care. Without a dedicated focus on improving diagnosis, diagnostic errors will likely worsen as the delivery of health care and the diagnostic process continue to increase in complexity. Just as the diagnostic process is a collaborative activity, improving diagnosis will require collaboration and a widespread commitment to change among health care professionals, health care organizations, patients and their families, researchers, and policy makers. The recommendations of Improving Diagnosis in Health Care contribute to the growing momentum for change in this crucial area of health care quality and safety.
Technology assessment can lead to the rapid application of essential diagnostic technologies and prevent the wide diffusion of marginally useful methods. In both of these ways, it can increase quality of care and decrease the cost of health care. This comprehensive monograph carefully explores methods of and barriers to diagnostic technology assessment and describes both the rationale and the guidelines for meaningful evaluation. While proposing a multi-institutional approach, it emphasizes some of the problems involved and defines a mechanism for improving the evaluation and use of medical technology and essential resources needed to enhance patient care.
Automotive Scan Tool PID Diagnostics (Diagnostics Strategies of Modern Automotive Systems ) By Mandy Concepcion In this section, the different techniques of scan tool parameter (PID) analysis will be exposed. Techniques involving PID analysis are quickly catching on, due to their speed and accuracy. By properly analyzing the different scanner PIDs, the technician can arrive at the source of the problem much faster and accurately. These procedures give rise to the new term “driver seat diagnostics”, since most of the preliminary diagnostic work is done through the scanner. However, these techniques will in no way replace the final manual tests that are a part of every diagnostic path. They are simply geared to point the technician in the right direction. Table of Contents INTRODUCTION (Introduction to scan tool diagnostics and the relevance of using PIDs or scanner parameter to perform the first leg of all diagnostics.) - Theory of Operation Behind the Different PIDs (Describes CARB, the difference between generic and enhanced PIDs, the FTP) - OBD II Generic PIDs (PID calculated and actual values, calculated data relationships, base injection timing, ECM value substitution) - OBD I & II General PID analysis (erasing code-or not, recording, analyzing and pinpoint tests, separating PIDs into groups) - Fuel Delivery Fault Detection (fuel delivery issues, intake air temp. sensor, BARO sensor, Engine LOAD, RPM PID, Short-Term Fuel Trims, Long-Term Fuel Trims, 60% of check engine light issues, block learn/integrators, Example 1: injector fault, Example 2: intake gasket issues, fuel status, ignition timing, MAP/MAF, TPS, O2 sensor, IAC, Closed Throttle, injector pulse width, voltage power, injector dutycycle, fuel trim cell) - Test #1 (Determining an engine’s fuel Consumption (rich-lean operation, duty-cycle to fuel trim relationship, O2 sensor to fuel trim relation, FT and vacuum leaks, ignition timing and idle control, test conclusion) - Test # 2 (Misfire Detection Strategy, EGR, Ignition and Mechanical misfires) (misfires and OBD2, scanner misfire detection – a time saver, OBD2 40 and 80 cycle misfire, ignition, injector and EGR density misfire, coil-on-plug, misfires and O2 sensor, lean O2 & Secondary misfire, O2 sensor & injector misfires, leaky injector, EGR and the MAP, Type A, B, C misfires, test conclusion) - Test # 3 (Air/Fuel Ratio Faults) (air-fuel imbalance, MAF and post O2 sensors, open-closed-loop, fuel enable, HC & CO relation to AF issues, test conclusion) - Test # 4 (BARO, MAP & MAF PID analysis) (MAP & valve timing faults, ECM behavior, fuel delivery or duty cycle test, volumetric efficiency, , test conclusion) - Test # 5 (Clogged exhaust) (clogged catalytic converter detection, TPS, MAF and converters, idle and WOT or wide open throttle values, vacuum readings, MAP to WOT chats analysis, engine and MAP vacuum, test conclusion) - Test # 6 (EGR Fault Detection) (EGR and MAP values, ECM reaction to EGR issues, EGR temp sensor, DPFE sensor, EGR and O2-MAP and lift position sensor, EGR and engine pre-loading, EGR and the ECM erroneous high LOAD issues, test conclusion) - Test # 7 (O2 Sensor Heater) (O2 heaters and why?, tough to check O2 heater issues, O2 heater effect on signal output, O2 heater bias voltage, engine off and O2 changing value, test conclusion) - Test # 8 (Resetting Fuel Trims) (resetting injection pulse corrections, long-term and short-term fuel trims, learn condition, Lambda, case study on fuel trims, FT resetting according to manufacturer, test conclusion) - Test # 9 (Engine Cranking Vacuum Test) (MAP/MAF cranking vacuum, vacuum to PID analysis, vacuum leaks, gauge-PID test, sources of leaks, cranking values, test conclusion)
Alcohol abuse, alcohol intolerance, alcohol dependence and other alcohol-related disabilities are some of the most challenging public health problems facing our modern-day society. The purpose of this comprehensive monograph is to review the available knowledge concerning the pharmacogenetic basis of alcohol sensitivity and its physiolgical implications and to synthesize the bulk of existing knowledge regarding metabolic features and biomedical disturbances related to alcoholism. The chapters cover a broad array of disciplines including an overview of historical and epidemiological aspects, biochemistry and molecular genetics of enzymes involved in alcohol metabolism, biochemical and neuropsychopharmacological effects of alcohol. Major emphasis is placed on the role of genetic factors in alcoholism. The experimental details are summarized and a comprehensive bibliography is included.